Showing 1 - 6 of 6
We propose the use of a local autoregressive (LAR) model for adaptive estimation and forecasting of three of China’s key macroeconomic variables: GDP growth, inflation and the 7-day interbank lending rate. The approach takes into account possible structural changes in the data-generating...
Persistent link: https://www.econbiz.de/10011265304
We propose a local adaptive multiplicative error model (MEM) accommodating timevarying parameters. MEM parameters are adaptively estimated based on a sequential testing procedure. A data-driven optimal length of local windows is selected, yielding adaptive forecasts at each point in time....
Persistent link: https://www.econbiz.de/10010544325
We model the dynamic volatility and correlation structure of electricity futures of the European Energy Exchange index. We use a new multiplicative dynamic conditional correlation (mDCC) model to separate long-run from short-run components. We allow for smooth changes in the unconditional...
Persistent link: https://www.econbiz.de/10010607142
We introduce a long memory autoregressive conditional Poisson (LMACP) model to model highly persistent time series of counts. The model is applied to forecast quoted bid-ask spreads, a key parameter in stock trading operations. It is shown that the LMACP nicely captures salient features of...
Persistent link: https://www.econbiz.de/10009205034
It is investigated whether Euro-area variables can be forecast better based on synthetic time series for the pre-Euro period or by using just data from Germany for the pre-Euro period. Our forecast comparison is based on quarterly data for the period 1970Q1 - 2003Q4 for ten macroeconomic...
Persistent link: https://www.econbiz.de/10005677971
A flexible statistical approach for the analysis of time-varying dynamics of transaction data on financial markets is here applied to intra-day trading strategies. A local adaptive technique is used to successfully predict financial time series, i.e., the buyer and the seller-initiated trading...
Persistent link: https://www.econbiz.de/10010895342