Showing 1 - 10 of 28
Vector autoregressions (VARs) are flexible time series models that can capture complex dynamic interrelationships among macroeconomic variables. However, their dense parameterization leads to unstable inference and inaccurate out-ofsample forecasts, particularly for models with many variables. A...
Persistent link: https://www.econbiz.de/10011605539
We propose a class of prior distributions that discipline the long-run behavior of Vector Autoregressions (VARs). These priors can be naturally elicited using economic theory, which provides guidance on the joint dynamics of macroeconomic time series in the long run. Our priors for the long run...
Persistent link: https://www.econbiz.de/10011853320
We propose a class of prior distributions that discipline the long-run predictions of vector autoregressions (VARs). These priors can be naturally elicited using economic theory, which provides guidance on the joint dynamics of macroeconomic time series in the long run. Our priors for the long...
Persistent link: https://www.econbiz.de/10011942777
We propose a class of prior distributions that discipline the long-run predictions of vector autoregressions (VARs). These priors can be naturally elicited using economic theory, which provides guidance on the joint dynamics of macroeconomic time series in the long run. Our priors for the long...
Persistent link: https://www.econbiz.de/10011754400
We propose a class of prior distributions that discipline the long-run behavior of Vector Autoregressions (VARs). These priors can be naturally elicited using economic theory, which provides guidance on the joint dynamics of macroeconomic time series in the long run. Our priors for the long run...
Persistent link: https://www.econbiz.de/10011802148
Vector autoregressions (VARs) are flexible time series models that can capture complex dynamic interrelationships among macroeconomic variables. However, their dense parameterization leads to unstable inference and inaccurate out-ofsample forecasts, particularly for models with many variables. A...
Persistent link: https://www.econbiz.de/10010686832
This paper formalizes the process of updating the nowcast and forecast on output and inflation as new releases of data become available. The marginal contribution of a particular release for the value of the signal and its precision is evaluated by computing "news" on the basis of an evolving...
Persistent link: https://www.econbiz.de/10011604679
This paper compares the predictive ability of the factor models of Stock and Watson (2002) and Forni, Hallin, Lippi, and Reichlin (2005) using a "large" panel of US macroeconomic variables. We propose a nesting procedure of comparison that clarifies and partially overturns the results of similar...
Persistent link: https://www.econbiz.de/10011604726
This paper shows that Vector Autoregression with Bayesian shrinkage is an appropriate tool for large dynamic models. We build on the results by De Mol, Giannone, and Reichlin (2008) and show that, when the degree of shrinkage is set in relation to the cross-sectional dimension, the forecasting...
Persistent link: https://www.econbiz.de/10011605012
The aim of this paper is to assess whether explicitly modeling structural change increases the accuracy of macroeconomic forecasts. We produce real time out-of-sample forecasts for inflation, the unemployment rate and the interest rate using a Time-Varying Coefficients VAR with Stochastic...
Persistent link: https://www.econbiz.de/10011605213