Showing 1 - 10 of 22
This paper presents the R package AdMit which provides functions to approximate and sample from a certain target distribution given only a kernel of the target density function. The core algorithm consists in the function AdMit which fits an adaptive mixture of Student-t distributions to the...
Persistent link: https://www.econbiz.de/10011376537
A novel approach to inference for a specific region of the predictive distribution is introduced. An important domain of application is accurate prediction of financial risk measures, where the area of interest is the left tail of the predictive density of logreturns. Our proposed approach...
Persistent link: https://www.econbiz.de/10012057160
A novel approach to inference for a specific region of the predictive distribution is introduced. An important domain of application is accurate prediction of financial risk measures, where the area of interest is the left tail of the predictive density of logreturns. Our proposed approach...
Persistent link: https://www.econbiz.de/10012214294
This paper proposes an up-to-date review of estimation strategies available for the Bayesian inference of GARCH-type models. The emphasis is put on a novel efficient procedure named AdMitIS. The methodology automatically constructs a mixture of Student-t distributions as an approximation to the...
Persistent link: https://www.econbiz.de/10010325655
This paper presents the R package AdMit which provides functions to approximate and sample from a certain target distribution given only a kernel of the target density function. The core algorithm consists in the function AdMit which fits an adaptive mixture of Student-t distributions to the...
Persistent link: https://www.econbiz.de/10010326034
This paper proposes an up-to-date review of estimation strategies available for the Bayesian inference of GARCH-type models. The emphasis is put on a novel efficient procedure named AdMitIS. The methodology automatically constructs a mixture of Student-t distributions as an approximation to the...
Persistent link: https://www.econbiz.de/10011380465
We present an accurate and efficient method for Bayesian forecasting of two financial risk measures, Value-at-Risk and Expected Shortfall, for a given volatility model. We obtain precise forecasts of the tail of the distribution of returns not only for the 10-days-ahead horizon required by the...
Persistent link: https://www.econbiz.de/10011979983
Persistent link: https://www.econbiz.de/10011862307
This discussion paper resulted in a chapter in: (K. Bocker (Ed.)) 'Rethinking Risk Measurement and Reporting - Volume II: Examples and Applications from Finance', 2010, London: Riskbooks.<P> This paper proposes an up-to-date review of estimation strategies available for the Bayesian inference of...</p>
Persistent link: https://www.econbiz.de/10011255484
The performance of Monte Carlo integration methods like importance-sampling or Markov-Chain Monte-Carlo procedures depends greatly on the choice of the importance- or candidate-density. Such a density must typically be "close" to the target density to yield numerically accurate results with...
Persistent link: https://www.econbiz.de/10005345300