Showing 1 - 10 of 10
A class of semiparametric fractional autoregressive GARCH models (SEMIFARGARCH), which includes deterministic trends, difference stationarity and stationarity with short- and long-range dependence, and heteroskedastic model errors, is very powerful for modelling financial time series. This paper...
Persistent link: https://www.econbiz.de/10005562284
A class of semiparametric fractional autoregressive GARCH models (SEMIFAR-GARCH), which includes deterministic trends, difference stationarity and stationarity with short-and long-range dependence, and heteroskedastic model errors, is very powerful for modelling ?nancial time series. This paper...
Persistent link: https://www.econbiz.de/10010266926
Recent results on so-called SEMIFAR models introduced by Beran (1997) are discussed. The nonparametric deterministic trend is estimated by a kernel method. The differencing and fractional differencing parameters as well as the autoregressive coefficients are estimated by an approximate maximum...
Persistent link: https://www.econbiz.de/10010316696
Recent results on so-called SEMIFAR models introduced by Beran (1997) are discussed. The nonparametric deterministic trend is estimated by a kernel method. The differencing and fractional differencing parameters as well as the autoregressive coefficients are estimated by an approximate maximum...
Persistent link: https://www.econbiz.de/10009793259
By applying SEMIFAR models (Beran, 1999), we examine 'long memory' in the volatility of worldwide stock market indices. Our analysis yields strong evidence of 'long memory' in stock market volatility, either in terms of stochastic long-range dependence or in form of deterministic trends. In some...
Persistent link: https://www.econbiz.de/10011543477
Time series in many areas of application often display local or global trends. Typical models that provide statistical explanations of such trends are, for example, polynomial regression, smooth bounded trends that are estimated nonparametrically, and difference-stationary processes such as, for...
Persistent link: https://www.econbiz.de/10011543808
The distinction between stationarity, difference stationarity, deterministic trends as well as between short- and long-range dependence has a major impact on statistical conclusions, such as confidence intervals for population quantities or point and interval forecasts. In this paper, recent...
Persistent link: https://www.econbiz.de/10011543928
SEMIFAR models introduced in Beran (1999) provide a semiparametric modelling framework that enables the data analyst to separate deterministic and stochastic trends as well as short- and long-memory components in an observed time series. A correct distinction between these components, and in...
Persistent link: https://www.econbiz.de/10011544579
Recent results on so-called SEMIFAR models introduced by Beran (1997) are discussed. The nonparametric deterministic trend is estimated by a kernel method. The differencing and fractional differencing parameters as well as the autoregressive coefficients are estimated by an approximate maximum...
Persistent link: https://www.econbiz.de/10010955524
A class of semiparametric fractional autoregressive GARCH models (SEMIFAR-GARCH), which includes deterministic trends, difference stationarity and stationarity with short- and long-range dependence, and heteroskedastic model errors, is very powerful for modelling financial time series. This...
Persistent link: https://www.econbiz.de/10005789989