Showing 1 - 10 of 12
We consider estimation of the linear component of a partial linear model when errors and regressors have long-range dependence. Assuming that errors and the stochastic component of regressors are linear processes with i.i.d. innovations, we closely examine the asymptotic properties of the OLS...
Persistent link: https://www.econbiz.de/10004992536
The problem of predicting 0-1-events is considered under general conditions, including stationary processes with short and long memory as well as processes with changing distribution patterns. Nonparametric estimates of the probability function and prediction intervals are obtained.
Persistent link: https://www.econbiz.de/10010324060
The problem of predicting 0-1-events is considered under general conditions, including stationary processes with short and long memory as well as processes with changing distribution patterns. Nonparametric estimates of the probability function and prediction intervals are obtained.
Persistent link: https://www.econbiz.de/10011544312
The problem of predicting 0-1-events is considered under general conditions, including stationary processes with short and long memory as well as processes with changing distribution patterns. Nonparametric estimates of the probability function and prediction intervals are obtained.
Persistent link: https://www.econbiz.de/10005357903
In this paper data-driven algorithms for fitting SEMIFAR models (Beran, 1999) are proposed. The algorithms combine the data-driven estimation of the nonparamet- ric trend and maximum likelihood estimation of the parameters. Convergence and asymptotic properties of the proposed algorithms are...
Persistent link: https://www.econbiz.de/10010324077
In this paper data-driven algorithms for fitting SEMIFAR models (Beran, 1999) are proposed. The algorithms combine the data-driven estimation of the nonparametric trend and maximum likelihood estimation of the parameters. For selecting the bandwidth, the proposal of Beran and Feng (1999) based...
Persistent link: https://www.econbiz.de/10011543365
By applying SEMIFAR models (Beran, 1999), we examine 'long memory' in the volatility of worldwide stock market indices. Our analysis yields strong evidence of 'long memory' in stock market volatility, either in terms of stochastic long-range dependence or in form of deterministic trends. In some...
Persistent link: https://www.econbiz.de/10011543477
Time series in many areas of application often display local or global trends. Typical models that provide statistical explanations of such trends are, for example, polynomial regression, smooth bounded trends that are estimated nonparametrically, and difference-stationary processes such as, for...
Persistent link: https://www.econbiz.de/10011543808
The distinction between stationarity, difference stationarity, deterministic trends as well as between short- and long-range dependence has a major impact on statistical conclusions, such as confidence intervals for population quantities or point and interval forecasts. In this paper, recent...
Persistent link: https://www.econbiz.de/10011543928
In this paper data-driven algorithms for fitting SEMIFAR models (Beran, 1999) are proposed. The algorithms combine the data-driven estimation of the nonparametric trend and maximum likelihood estimation of the parameters. Convergence and asymptotic properties of the proposed algorithms are...
Persistent link: https://www.econbiz.de/10011544511