Showing 1 - 10 of 17
The problem of predicting 0-1-events is considered under general conditions, including stationary processes with short and long memory as well as processes with changing distribution patterns. Nonparametric estimates of the probability function and prediction intervals are obtained.
Persistent link: https://www.econbiz.de/10011544312
Recent results on so-called SEMIFAR models introduced by Beran (1997) are discussed. The nonparametric deterministic trend is estimated by a kernel method. The differencing and fractional differencing parameters as well as the autoregressive coefficients are estimated by an approximate maximum...
Persistent link: https://www.econbiz.de/10010316696
Recent results on so-called SEMIFAR models introduced by Beran (1997) are discussed. The nonparametric deterministic trend is estimated by a kernel method. The differencing and fractional differencing parameters as well as the autoregressive coefficients are estimated by an approximate maximum...
Persistent link: https://www.econbiz.de/10010955524
Persistent link: https://www.econbiz.de/10005616375
In this paper data-driven algorithms for fitting SEMIFAR models (Beran, 1999) are proposed. The algorithms combine the data-driven estimation of the nonparamet- ric trend and maximum likelihood estimation of the parameters. Convergence and asymptotic properties of the proposed algorithms are...
Persistent link: https://www.econbiz.de/10005146733
The problem of predicting 0-1-events is considered under general conditions, including stationary processes with short and long memory as well as processes with changing distribution patterns. Nonparametric estimates of the probability function and prediction intervals are obtained.
Persistent link: https://www.econbiz.de/10005357903
The problem of predicting 0-1-events is considered under general conditions, including stationary processes with short and long memory as well as processes with changing distribution patterns. Nonparametric estimates of the probability function and prediction intervals are obtained.
Persistent link: https://www.econbiz.de/10010324060
In this paper data-driven algorithms for fitting SEMIFAR models (Beran, 1999) are proposed. The algorithms combine the data-driven estimation of the nonparamet- ric trend and maximum likelihood estimation of the parameters. Convergence and asymptotic properties of the proposed algorithms are...
Persistent link: https://www.econbiz.de/10010324077
Recent results on so-called SEMIFAR models introduced by Beran (1997) are discussed. The nonparametric deterministic trend is estimated by a kernel method. The differencing and fractional differencing parameters as well as the autoregressive coefficients are estimated by an approximate maximum...
Persistent link: https://www.econbiz.de/10009793259
In this paper data-driven algorithms for fitting SEMIFAR models (Beran, 1999) are proposed. The algorithms combine the data-driven estimation of the nonparametric trend and maximum likelihood estimation of the parameters. For selecting the bandwidth, the proposal of Beran and Feng (1999) based...
Persistent link: https://www.econbiz.de/10011543365