Showing 1 - 10 of 17
Persistent link: https://www.econbiz.de/10008533873
We consider estimation of the linear component of a partial linear model when errors and regressors have long-range dependence. Assuming that errors and the stochastic component of regressors are linear processes with i.i.d. innovations, we closely examine the asymptotic properties of the OLS...
Persistent link: https://www.econbiz.de/10004992536
Persistent link: https://www.econbiz.de/10013170015
Persistent link: https://www.econbiz.de/10012050888
We derive the asymptotic distribution of a new backfitting procedure for estimating the closest additive approximation to a nonparametric regression function. The procedure employs a recent projection interpretation of popular kernel estimators provided by Mammen et al. (1997), and the...
Persistent link: https://www.econbiz.de/10005249163
We derive the asymptotic distribution of a new backfitting procedure for estimating the closest additive approximation to a nonparametric regression function. The procedure employs a recent projection interpretation of popular kernel estimators provided by Mammen, Marron, Turlach and Wand...
Persistent link: https://www.econbiz.de/10005310381
Persistent link: https://www.econbiz.de/10005603680
We derive the asymptotic distribution of a new backfitting procedure for estimating the closest additive approximation to a nonparametric regression function. The procedure employs a recent projection interpretation of popular kernel estimators provided by Mammen, Marron, Turlach and Wand...
Persistent link: https://www.econbiz.de/10010744974
In this paper data-driven algorithms for fitting SEMIFAR models (Beran, 1999) are proposed. The algorithms combine the data-driven estimation of the nonparamet- ric trend and maximum likelihood estimation of the parameters. Convergence and asymptotic properties of the proposed algorithms are...
Persistent link: https://www.econbiz.de/10010324077
In this paper data-driven algorithms for fitting SEMIFAR models (Beran, 1999) are proposed. The algorithms combine the data-driven estimation of the nonparametric trend and maximum likelihood estimation of the parameters. For selecting the bandwidth, the proposal of Beran and Feng (1999) based...
Persistent link: https://www.econbiz.de/10011543365