Showing 1 - 10 of 64
This paper discusses nonparametric kernel regression with the regressor being a d-dimensional ß-null recurrent process in presence of conditional heteroscedasticity. We show that the mean function estimator is consistent with convergence rate p n(T)hd, where n(T) is the number of regenerations...
Persistent link: https://www.econbiz.de/10011297654
This paper considers a nonparametric regression model for cross-sectional data in the presence of common shocks. Common shocks are allowed to be very general in nature; they do not need to be finite dimensional with a known (small) number of factors. I investigate the properties of the...
Persistent link: https://www.econbiz.de/10011568282
This paper proposes a fully nonparametric kernel method to account for observed covariates in regression discontinuity designs (RDD), which may increase precision of treatment effect estimation. It is shown that conditioning on covariates reduces the asymptotic variance and allows estimating the...
Persistent link: https://www.econbiz.de/10011760113
Persistent link: https://www.econbiz.de/10003335752
Persistent link: https://www.econbiz.de/10009374192
For the common binary response model we propose a direct method for the nonparametric estimation of the effective dose level ED? (0 ? 1). The estimator is obtained by the composition of a nonparametric estimate of the quantile response curve and a classical density estimate. The new method...
Persistent link: https://www.econbiz.de/10010514275
In this paper we consider nonparametric estimation of a structural equation model under full additivity constraint. We propose estimators for both the conditional mean and gradient which are consistent, asymptotically normal, oracle efficient and free from the curse of dimensionality. Monte...
Persistent link: https://www.econbiz.de/10010350365
In this paper data-driven algorithms for fitting SEMIFAR models (Beran, 1999) are proposed. The algorithms combine the data-driven estimation of the nonparametric trend and maximum likelihood estimation of the parameters. For selecting the bandwidth, the proposal of Beran and Feng (1999) based...
Persistent link: https://www.econbiz.de/10011543365
In this paper a modified double smoothing bandwidth selector, MDS, based on a new criterion, which combines the plug-in and the double smoothing ideas, is proposed. A self-complete iterative double smoothing rule (_IDS ) is introduced as a pilot method. The asymptotic properties of both_IDS...
Persistent link: https://www.econbiz.de/10011544923
For the problem of testing symmetry of the error distribution in a nonparametric regression model we propose as a test statistic the difference between the two empirical distribution functions of estimated residuals and their counterparts with opposite signs. The weak convergence of the...
Persistent link: https://www.econbiz.de/10010477499