Showing 1 - 5 of 5
Forecast models that take into account unbalanced datasets have recently attracted substantial attention. In this paper, we focus on different methods pro- posed so far in the literature to deal with mixed-frequency and ragged-edge datasets: bridge equations, mixed-data sampling (MIDAS), and...
Persistent link: https://www.econbiz.de/10010540194
The development of models for variables sampled at different frequencies has attracted substantial interest in the recent econometric literature. In this paper we provide an overview of the most common techniques, including bridge equations, MIxed DAta Sampling (MIDAS) models, mixed frequency...
Persistent link: https://www.econbiz.de/10010610582
This paper compares the mixed-data sampling (MIDAS) and mixed-frequency VAR (MF-VAR) approaches to model speci.cation in the presence of mixed-frequency data, e.g., monthly and quarterly series. MIDAS leads to parsimonious models based on exponential lag polynomials for the coe¢ cients, whereas...
Persistent link: https://www.econbiz.de/10005049565
This paper discusses pooling versus model selection for now- and forecasting in the presence of model uncertainty with large, unbalanced datasets. Empirically, unbalanced data is pervasive in economics and typically due to di¤erent sampling frequencies and publication delays. Two model classes...
Persistent link: https://www.econbiz.de/10005744253
This paper compares different ways to estimate the current state of the economy using factor models that can handle unbalanced datasets. Due to the different release lags of business cycle indicators, data unbalancedness often emerges at the end of multivariate samples, which is sometimes...
Persistent link: https://www.econbiz.de/10005557690