Showing 1 - 9 of 9
The paper presents some issues currently under studying in the field of Cooperative Games. The related open problems are also mentioned.
Persistent link: https://www.econbiz.de/10010671634
Abstract: This chapter first summarizes Response Surface Methodology (RSM), which started with Box and Wilson’s article in 1951 on RSM for real, non-simulated systems. RSM is a stepwise heuristic that uses first-order polynomials to approximate the response surface locally. An estimated...
Persistent link: https://www.econbiz.de/10011092681
This contribution presents an overview of sensitivity analysis of simulation models, including the estimation of gradients. It covers classic designs and their corresponding (meta)models; namely, resolution-III designs including fractional-factorial two-level designs for first-order polynomial...
Persistent link: https://www.econbiz.de/10011092780
Design Of Experiments (DOE) is needed for experiments with real-life systems, and with either deterministic or random simulation models. This contribution discusses the different types of DOE for these three domains, but focusses on random simulation. DOE may have two goals: sensitivity analysis...
Persistent link: https://www.econbiz.de/10011090795
Textbooks on Design Of Experiments invariably start by explaining why one-factor-at-a -time (OAT) is an inferior method. Here we will show that in a model with all interactions a variant of OAT is extremely efficient, provided that we only have non-negative parameters and that there are only a...
Persistent link: https://www.econbiz.de/10011090833
Traditionally pull production systems are managed through classic control systems such as Kanban, Conwip, or Base stock, but this paper proposes ‘customized’ pull control. Customization means that a given production line is managed through a pull control system that in principle connects...
Persistent link: https://www.econbiz.de/10011091307
Abstract: This article surveys optimization of simulated systems. The simulation may be either deterministic or random. The survey reflects the author’s extensive experience with simulation-optimization through Kriging (or Gaussian process) metamodels. The analysis of these metamodels may use...
Persistent link: https://www.econbiz.de/10011091591
Persistent link: https://www.econbiz.de/10011091733
Abstract: Distribution-free bootstrapping of the replicated responses of a given discreteevent simulation model gives bootstrapped Kriging (Gaussian process) metamodels; we require these metamodels to be either convex or monotonic. To illustrate monotonic Kriging, we use an M/M/1 queueing...
Persistent link: https://www.econbiz.de/10011092190