Showing 1 - 10 of 687
The fact that the expected payoffs on assets and call options are infinite under most log-stable distributions led Paul Samuelson and Robert Merton to conjecture that assets and derivatives could not be reasonably priced under these distributions, despite their many other attractive features....
Persistent link: https://www.econbiz.de/10005328962
For a Markov process $x_t$, the forward measure $P^T$ over the time interval $[0,T]$ is defined by the Radon-Nikodym derivative $dP^T/dP = M\exp(-\int_0^Tc(x_s)ds)$, where $c$ is a given non-negative function and $M$ is the normalizing constant. In this paper, the law of $x_t$ under the forward...
Persistent link: https://www.econbiz.de/10005759649
The characteristic functions of many affine jump-diffusion models, such as Heston’s stochastic volatility model and all of its extensions, involve multivalued functions such as the complex logarithm. If we restrict the logarithm to its principal branch, as is done in most software packages,...
Persistent link: https://www.econbiz.de/10010325214
At the time of writing this article, Fourier inversion is the computational method of choice for a fast and accurate calculation of plain vanilla option prices in models with an analytically available characteristic function. Shifting the contour of integration along the complex plane allows for...
Persistent link: https://www.econbiz.de/10010325539
We propose a direct and robust method for quantifying the variance risk premium on financial assets. We theoretically and numerically show that the risk-neutral expected value of the return variance, also known as the variance swap rate, is well approximated by the value of a particular...
Persistent link: https://www.econbiz.de/10005413197
We consider the hedging of options when the price of the underlying asset is always exposed to the possibility of jumps of random size. Working in a single factor Markovian setting, we derive a new spanning relation between a given option and a continuum of shorter-term options written on the...
Persistent link: https://www.econbiz.de/10005413226
This paper proposes a new explanation for the smile and skewness effects in implied volatilities. Starting from a microeconomic equilibrium approach, we develop a diffusion model for stock prices explicitly incorporating the technical demand induced by hedging strategies. This leads to a...
Persistent link: https://www.econbiz.de/10004968203
In this survey we discuss models with level-dependent and stochastic volatility from the viewpoint of erivative asset analysis. Both classes of models are generalisations of the classical Black-Scholes model; they have been developed in an effort to build models that are flexible enough to cope...
Persistent link: https://www.econbiz.de/10004968274
In this paper a stochastic volatility model is presented that directly prescribes the stochastic development of the implied Black-Scholes volatilities of a set of given standard options. Thus the model is able to capture the stochastic movements of a full term structure of implied volatilities....
Persistent link: https://www.econbiz.de/10004968281
This paper studies the behavior of the implied volatility function (smile) when the true distribution of the underlying asset is consistent with the stochastic volatility model proposed by Heston (1993). The main result of the paper is to extend previous results applicable to the smile as a...
Persistent link: https://www.econbiz.de/10004972704