Showing 1 - 10 of 15
In this paper we study the properties of the analytic central path of asemidefinite programming problem under perturbation of a set of inputparameters. Specifically, we analyze the behavior of solutions on the centralpath with respect to changes on the right hand side of the...
Persistent link: https://www.econbiz.de/10011284099
In this paper we study the properties of the analytic central path of asemidefinite programming problem under perturbation of a set of inputparameters. Specifically, we analyze the behavior of solutions on the centralpath with respect to changes on the right hand side of the...
Persistent link: https://www.econbiz.de/10010324706
In this paper we study the properties of the analytic central path of asemidefinite programming problem under perturbation of a set of inputparameters. Specifically, we analyze the behavior of solutions on the centralpath with respect to changes on the right hand side of the...
Persistent link: https://www.econbiz.de/10011255578
In this paper, we develop various calculus rules for general smooth matrix-valued functions and for the class of matrix convex (or concave) functions first introduced by Loewner and Kraus in 1930s. Then we use these calculus rules and the matrix convex function -log X to study a new notion of...
Persistent link: https://www.econbiz.de/10004969823
We study stochastic linear--quadratic (LQ) optimal control problems over an infinite horizon, allowing the cost matrices to be indefinite. We develop a systematic approach based on semidefinite programming (SDP). A central issue is the stability of the feedback control; and we show this can be...
Persistent link: https://www.econbiz.de/10008570636
In this paper a symmetric primal-dual transformation for positive semidefinite programming is proposed. For standard SDP problems, after this symmetric transformation the primal variables and the dual slacks become identical. In the context of linear programming, existence of such a primal-dual...
Persistent link: https://www.econbiz.de/10008584634
In this paper we generalize the primal--dual cone affine scaling algorithm of Sturm and Zhang to semidefinite programming. We show in this paper that the underlying ideas of the cone affine scaling algorithm can be naturely applied to semidefinite programming, resulting in a new algorithm....
Persistent link: https://www.econbiz.de/10008584716
In this paper, we generalize the notion of weighted centers to semidefinite programming. Our analysis fits in the v-space framework, which is purely based on the symmetric primal-dual transformation and does not make use of barriers. Existence and scale invariance properties are proven for the...
Persistent link: https://www.econbiz.de/10008584768
It has been shown in various recent research reports that the analysis of short step primal-dual path following algorithms for linear programming can be nicely generalized to semidefinite programming. However, the analysis of long step path-following algorithms for semidefinite programming...
Persistent link: https://www.econbiz.de/10008584777
We study a deterministic linear-quadratic (LQ) control problem over an infinite horizon, and develop a general apprach to the problem based on semi-definite programming (SDP)and related duality analysis. This approach allows the control cost matrix R to be non-negative (semi-definite), a case...
Persistent link: https://www.econbiz.de/10008584818