Showing 1 - 8 of 8
We propose multivariate classification as a statistical tool to describe business cycles. These cycles are often analyzed as a univariate phenomenon in terms of GNP or industrial net production ignoring additional information in other economic variables. Multivariate classification overcomes...
Persistent link: https://www.econbiz.de/10010316572
We propose multivariate classification as a statistical tool to describe business cycles. These cycles are often analyzed as a univariate phenomenon in terms of GNP or industrial net production ignoring additional information in other economic variables. Multivariate classification overcomes...
Persistent link: https://www.econbiz.de/10009793278
We propose multivariate classification as a statistical tool to describe business cycles. These cycles are often analyzed as a univariate phenomenon in terms of GNP or industrial net production ignoring additional information in other economic variables. Multivariate classification overcomes...
Persistent link: https://www.econbiz.de/10010982396
In simulation studies Latent Factor Prediction Pursuit outperformed classical reduced rank regression methods. The algorithm described so far for Latent Factor Prediction Pursuit had two shortcomings: It was only implemented for situations where the explanatory variables were of full colum rank....
Persistent link: https://www.econbiz.de/10010296659
We propose a computer intensive method for linear dimension reduction which minimizes the classification error directly. Simulated annealing (Bohachevsky et al 1986) as a modern optimization technique is used to solve this problem effectively. This approach easily allows to incorporate user...
Persistent link: https://www.econbiz.de/10010316563
We propose a computer intensive method for linear dimension reduction which minimizes the classification error directly. Simulated annealing (Bohachevsky et al 1986) as a modern optimization technique is used to solve this problem effectively. This approach easily allows to incorporate user...
Persistent link: https://www.econbiz.de/10009789907
In simulation studies Latent Factor Prediction Pursuit outperformed classical reduced rank regression methods. The algorithm described so far for Latent Factor Prediction Pursuit had two shortcomings: It was only implemented for situations where the explanatory variables were of full colum rank....
Persistent link: https://www.econbiz.de/10009219845
We propose a computer intensive method for linear dimension reduction which minimizes the classification error directly. Simulated annealing (Bohachevsky et al 1986) as a modern optimization technique is used to solve this problem effectively. This approach easily allows to incorporate user...
Persistent link: https://www.econbiz.de/10010982395