Showing 1 - 10 of 699,887
The aim of these notes is to revisit sequential Monte Carlo (SMC) sampling. SMC sampling is a powerful simulation tool for solving non-linear and/or non-Gaussian state space models. We illustrate this with several examples
Persistent link: https://www.econbiz.de/10012993836
Several modified estimation methods of the memory parameter have been introduced in the past years. They aim to decrease the upward bias of the memory parameter in cases of low frequency contaminations or an additive noise component, especially in situations with a short-memory process being...
Persistent link: https://www.econbiz.de/10011813775
Several modified estimation methods of the memory parameter have been introduced in the past years. They aim to decrease the upward bias of the memory parameter in cases of low frequency contaminations or an additive noise component, especially in situations with a short-memory process being...
Persistent link: https://www.econbiz.de/10011823283
We consider Particle Gibbs (PG) as a tool for Bayesian analysis of non-linear non-Gaussian state-space models. PG is a Monte Carlo (MC) approximation of the standard Gibbs procedure which uses sequential MC (SMC) importance sampling inside the Gibbs procedure to update the latent and potentially...
Persistent link: https://www.econbiz.de/10012970355
Following Lancaster (2002), we propose a strategy to solve the incidental parameter problem. The method is demonstrated under a simple panel Poisson count model. We also extend the strategy to accomodate cases when information orthogonality is unavailable, such as the linear AR(p) panel model....
Persistent link: https://www.econbiz.de/10003817215
In this paper the performance of information criteria and a test against SETAR nonlinearity for outlier contaminated time series are investigated. Additive outliers can seriously influence the properties of the underlying time series and hence of linearity tests, resulting in spurious test...
Persistent link: https://www.econbiz.de/10011488709
Sequential Monte Carlo (SMC) methods are widely used for non-linear filtering purposes. However, the SMC scope encompasses wider applications such as estimating static model parameters so much that it is becoming a serious alternative to Markov-Chain Monte-Carlo (MCMC) methods. Not only do SMC...
Persistent link: https://www.econbiz.de/10011504888
In this paper the performance of different information criteria for simultaneous model class and lag order selection is evaluated using simulation studies. We focus on the ability of the criteria to distinguish linear and nonlinear models. In the simulation studies, we consider three different...
Persistent link: https://www.econbiz.de/10010503893
Sequential Monte Carlo (SMC) methods are widely used for non-linear filtering purposes. Nevertheless the SMC scope encompasses wider applications such as estimating static model parameters so much that it is becoming a serious alternative to Markov-Chain Monte-Carlo (MCMC) methods. Not only SMC...
Persistent link: https://www.econbiz.de/10012936969
We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear, non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent...
Persistent link: https://www.econbiz.de/10013005987