Showing 151 - 160 of 209
In this paper, we extend the parametric, asymmetric, stochastic volatility model (ASV), where returns are correlated with volatility, by flexibly modeling the bivariate distribution of the return and volatility innovations nonparametrically. Its novelty is in modeling the joint, conditional,...
Persistent link: https://www.econbiz.de/10010551271
This paper develops an efficient approach to model and forecast time-series data with an unknown number of change-points. Using a conjugate prior and conditional on time-invariant parameters, the predictive density and the posterior distribution of the change-points have closed forms. The...
Persistent link: https://www.econbiz.de/10010551743
Hamiltonian Monte Carlo (HMC) is a recent statistical procedure to sample from complex distributions. Distant proposal draws are taken in a sequence of steps following the Hamiltonian dynamics of the underlying parameter space, often yielding superior mixing properties of the resulting Markov...
Persistent link: https://www.econbiz.de/10010555038
This paper investigates whether risks associated with time-varying arrival of jumps and their effect on the dynamics of higher moments of returns are priced in the conditional mean of daily market excess returns. We find that jumps and jump dynamics are significantly related to the market equity...
Persistent link: https://www.econbiz.de/10010555039
In this paper we extend the parametric, asymmetric, stochastic volatility model (ASV), where returns are correlated with volatility, by flexibly modeling the bivariate distribution of the return and volatility innovations nonparametrically. Its novelty is in modeling the joint, conditional,...
Persistent link: https://www.econbiz.de/10010555040
This paper proposes new dynamic component models of returns and realized covariance (RCOV) matrices based on time-varying Wishart distributions. Bayesian estimation and model comparison is conducted with a range of multivariate GARCH models and existing RCOV models from the literature. The main...
Persistent link: https://www.econbiz.de/10010555042
This paper proposes a Bayesian nonparametric modeling approach for the return distribution in multivariate GARCH models. In contrast to the parametric literature the return distribution can display general forms of asymmetry and thick tails. An infinite mixture of multivariate normals is given a...
Persistent link: https://www.econbiz.de/10010556310
This paper develops an efficient approach to modelling and forecasting time series data with an unknown number of change-points. Using a conjugate prior and conditioning on time-invariant parameters, the predictive density and the posterior distribution of the change-points have closed forms....
Persistent link: https://www.econbiz.de/10010730015
We extend the asymmetric, stochastic, volatility model by modeling the return-volatility distribution nonparametrically. The novelty is modeling this distribution with an infinite mixture of Normals, where the mixture unknowns have a Dirichlet process prior. Cumulative Bayes factors show our...
Persistent link: https://www.econbiz.de/10010730133
Persistent link: https://www.econbiz.de/10006551775