Showing 91 - 100 of 160
This paper introduces a nonparametric Granger-causality test for covariance stationary linear processes under, possibly, the presence of long-range dependence. We show that the test is consistent and has power against contiguous alternatives converging to the parametric rate T-½. Since the test...
Persistent link: https://www.econbiz.de/10011071140
The paper proposes a simple test for the hypothesis of strong cycles and as a by-product a test for weak dependence for linear processes. We show that the limit distribution of the test is the maximum of a (semi)Gaussian process G(τ), τ ∈ [0; 1]. Because the covariance structure of G(τ) is a...
Persistent link: https://www.econbiz.de/10011071202
For linear processes, semiparametric estimation of the memory parameter, based on the log-periodogram and local Whittle estimators, has been exhaustively examined and their properties are well established. However, except for some specific cases, little is known about the estimation of the...
Persistent link: https://www.econbiz.de/10011071286
This paper examines a nonparametric test for Granger-causality for a vector covariance stationary linear process under, possibly, the presence of long-range dependence. We show that the test converges to a non-distribution free multivariate Gaussian process, say vec (B(μ)) indexed by μ Є...
Persistent link: https://www.econbiz.de/10011071304
We consider a parametric spectral density with power-law behaviour about a fractional pole at the unknown frequency !. The case of known !, especially ! = 0, is standard in the long memory literature. When ! is unknown, asymptotic distribution theory for estimates of parameters, including the...
Persistent link: https://www.econbiz.de/10011071316
We consider the estimation of the location of the pole and memory parameter, λ0 and α respectively, of covariance stationary linear processes whose spectral density function f(λ) satisfies f(λ) ∼ C|λ − λ0|−α in a neighbourhood of λ0. We define a consistent estimator of λ0 and...
Persistent link: https://www.econbiz.de/10011071344
We describe and examine a consistent test for the correct specification of a regression function with dependent data. The test is based on the supremum of the difference between the parametric and nonparametric estimates of the regression model. Rather surprisingly, the behaviour of the test...
Persistent link: https://www.econbiz.de/10010928619
This article proposes a class of goodness-of-fit tests for the autocorrelation function of a time series process, including those exhibiting long-range dependence. Test statistics for composite hypotheses are functionals of a (approximated) martingale transformation of the Bartlett’s...
Persistent link: https://www.econbiz.de/10010928781
Persistent link: https://www.econbiz.de/10006750356
Persistent link: https://www.econbiz.de/10006794812