Showing 91 - 100 of 204
Andrieu et al. (2010) prove that Markov chain Monte Carlo samplers still converge to the correct posterior distribution of the model parameters when the likelihood is estimated by the particle filter (with a finite number of particles) is used instead of the likelihood. A critical issue for...
Persistent link: https://www.econbiz.de/10012870345
We propose a generic Markov Chain Monte Carlo (MCMC) algorithm to speed up computations for datasets with many observations. A key feature of our approach is the use of the highly effcient difference estimator from the survey sampling literature to estimate the log-likelihood accurately using...
Persistent link: https://www.econbiz.de/10013002559
We consider Bayesian inference by importance sampling when the likelihood is analytically intractable but can be unbiasedly estimated. We refer to this procedure as importance sampling squared (IS2), as we can often estimate the likelihood itself by importance sampling. We provide a formal...
Persistent link: https://www.econbiz.de/10013059994
The computing time for Markov Chain Monte Carlo (MCMC) algorithms can be prohibitively large for datasets with many observations, especially when the data density for each observation is costly to evaluate. We propose a framework where the likelihood function is estimated from a random subset of...
Persistent link: https://www.econbiz.de/10013024606
We introduce a new Markov chain Monte Carlo (MCMC) sampler called the Markov Interacting Importance Sampler (MIIS). The MIIS sampler uses conditional importance sampling (IS) approximations to jointly sample the current state of the Markov Chain and estimate conditional expectations, possibly by...
Persistent link: https://www.econbiz.de/10013027522
Persistent link: https://www.econbiz.de/10013274279
We construct a copula from the skew t distribution of Sahu, Dey & Branco (2003). This copula can capture asymmetric and extreme dependence between variables, and is one of the few copulas that can do so and still be used in high dimensions effectively. However, it is difficult to estimate the...
Persistent link: https://www.econbiz.de/10013145057
A general model is proposed for flexibly estimating the density of a continuous response variable conditional on a possibly high-dimensional set of covariates. The model is a finite mixture of asymmetric student-t densities with covariate dependent mixture weights. The four parameters of the...
Persistent link: https://www.econbiz.de/10013147954
We model a regression density flexibly so that at each value of the covariates the density is a mixture of normals with the means, variances and mixture probabilities of the components changing smoothly as a function of the covariates. The model extends existing models in two important ways....
Persistent link: https://www.econbiz.de/10012746461
Persistent link: https://www.econbiz.de/10011591626