Showing 91 - 100 of 423
Persistent link: https://www.econbiz.de/10012878194
Modeling and forecasting dynamic (or time-varying) covariance matrices has many important applications in finance, such as Markowitz portfolio selection. A popular tool to this end are multivariate GARCH models. Historically, such models did not perform well in large dimensions due to the...
Persistent link: https://www.econbiz.de/10012253083
Many researchers seek factors that predict the cross-section of stock returns. The standard methodology sorts stocks according to their factor scores into quantiles and forms a corresponding long-short portfolio. Such a course of action ignores any information on the covariance matrix of stock...
Persistent link: https://www.econbiz.de/10011571257
Constructing joint confidence bands for structural impulse response functions based on a VAR model is a difficult task because of the non-linear nature of such functions. We propose new joint confidence bands that cover the entire true structural impulse response function up to a chosen maximum...
Persistent link: https://www.econbiz.de/10011630774
This paper introduces a new method for deriving covariance matrix estimators that are decision-theoretically optimal within a class of nonlinear shrinkage estimators. The key is to employ large-dimensional asymptotics: the matrix dimension and the sample size go to infinity together, with their...
Persistent link: https://www.econbiz.de/10011630780
This paper deals with certain estimation problems involving the covariance matrix in large dimensions. Due to the breakdown of finite-dimensional asymptotic theory when the dimension is not negligible with respect to the sample size, it is necessary to resort to an alternative framework known as...
Persistent link: https://www.econbiz.de/10011598572
Markowitz (1952) portfolio selection requires an estimator of the covariance matrix of returns. To address this problem, we promote a nonlinear shrinkage estimator that is more flexible than previous linear shrinkage estimators and has just the right number of free parameters (that is, the...
Persistent link: https://www.econbiz.de/10011598583
Under rotation-equivariant decision theory, sample covariance matrix eigenvalues can be optimally shrunk by recombining sample eigenvectors with a (potentially nonlinear) function of the unobservable population covariance matrix. The optimal shape of this function reflects the loss/risk that is...
Persistent link: https://www.econbiz.de/10012030045
Many econometric and data-science applications require a reliable estimate of the covariance matrix, such as Markowitz portfolio selection. When the number of variables is of the same magnitude as the number of observations, this constitutes a difficult estimation problem; the sample covariance...
Persistent link: https://www.econbiz.de/10012018920
Persistent link: https://www.econbiz.de/10011924578