Showing 1 - 10 of 629
We consider median regression and, more generally, quantile regression in high-dimensional sparse models. In these models the overall number of regressors p is very large, possibly larger than the sample size n, but only s of these regressors have non-zero impact on the conditional quantile of...
Persistent link: https://www.econbiz.de/10003838974
Persistent link: https://www.econbiz.de/10003861820
Persistent link: https://www.econbiz.de/10003432532
Persistent link: https://www.econbiz.de/10003432546
In this paper we study post-penalized estimators which apply ordinary, unpenalized linear regression to the model selected by first-step penalized estimators, typically LASSO. It is well known that LASSO can estimate the regression function at nearly the oracle rate, and is thus hard to improve...
Persistent link: https://www.econbiz.de/10003989968
Persistent link: https://www.econbiz.de/10003960382
Quantile regression (QR) is a principal regression method for analyzing the impact of covariates on outcomes. The impact is described by the conditional quantile function and its functionals. In this paper we develop the nonparametric QR series framework, covering many regressors as a special...
Persistent link: https://www.econbiz.de/10009153247
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10009548244
In this paper, we provide efficient estimators and honest confidence bands for a variety of treatment effects including local average (LATE) and local quantile treatment effects (LQTE) in data-rich environments. We can handle very many control variables, endogenous receipt of treatment,...
Persistent link: https://www.econbiz.de/10011337681
Persistent link: https://www.econbiz.de/10011349460