Showing 1 - 10 of 688,378
Although many macroeconomic time series are assumed to follow nonlinear processes, nonlinear models often do not provide better predictions than their linear counterparts. Furthermore, such models easily become very complex and difficult to estimate. The aim of this study is to investigate...
Persistent link: https://www.econbiz.de/10010434848
We introduce and investigate some properties of a class of nonlinear time series models based on the moving sample quantiles in the autoregressive data generating process. We derive a test fit to detect this type of nonlinearity. Using the daily realized volatility data of Standard & Poor's 500...
Persistent link: https://www.econbiz.de/10010478989
In this paper, we propose a simulation-based method for computing point and density forecasts for univariate noncausal and non-Gaussian autoregressive processes. Numerical methods are needed to forecast such time series because the prediction problem is generally nonlinear and no analytic...
Persistent link: https://www.econbiz.de/10013147243
This paper examines the impact of intraday periodicity on forecasting realized volatility using a heterogeneous autoregressive model (HAR) framework. We show that periodicity inflates the variance of the realized volatility and biases jump estimators. This combined effect adversely affects...
Persistent link: https://www.econbiz.de/10012063222
We propose Midastar models by combining the Mixed Data Sampling (MIDAS) and the threshold autoregression (TAR). The Midastar model of the first kind is designed for a low frequency target variable and a high frequency threshold variable. The proposed model can detect threshold effects...
Persistent link: https://www.econbiz.de/10014240508
The necessary and sufficient condition to test for 'overall causality', i.e., the presence of Granger-causality and instantaneous causal relations, in a bivariate and trivariate autoregressive model with recursive form is discussed. It is argued that the conventional AR model (the reduced form...
Persistent link: https://www.econbiz.de/10014098658
This chapter uses a modified block Choleski decomposition method and tree pruning algorithms to attain the best multivariate subset autoregression for each size (number of non-zero coefficient matrices). Model selection criteria are then employed to select the optimum multivariate subset AR. A...
Persistent link: https://www.econbiz.de/10014098664
This study focuses on the question whether nonlinear transformation of lagged time series values and residuals are able to systematically improve the average forecasting performance of simple Autoregressive models. Furthermore it investigates the potential superior forecasting results of a...
Persistent link: https://www.econbiz.de/10009310287
Autoregressive models are used routinely in forecasting and often lead to better performance than more complicated models. However, empirical evidence is also suggesting that the autoregressive representations of many macroeconomic and financial time series are likely to be subject to structural...
Persistent link: https://www.econbiz.de/10011508088
Autoregressive models are used routinely in forecasting and often lead to better performance than more complicated models. However, empirical evidence is also suggesting that the autoregressive representations of many macroeconomic and financial time series are likely to be subject to structural...
Persistent link: https://www.econbiz.de/10013319854