Showing 91 - 100 of 383
This paper deals with certain estimation problems involving the covariance matrix in large dimensions. Due to the breakdown of finite-dimensional asymptotic theory when the dimension is not negligible with respect to the sample size, it is necessary to resort to an alternative framework known as...
Persistent link: https://www.econbiz.de/10011663174
There has been a recent interest in reporting p-values adjusted for resampling-based stepdown multiple testing procedures proposed in Romano and Wolf (2005a,b). The original papers only describe how to carry out multiple testing at a fixed significance level. Computing adjusted p-values instead...
Persistent link: https://www.econbiz.de/10011663178
Second moments of asset returns are important for risk management and portfolio selection. The problem of estimating second moments can be approached from two angles: time series and the cross-section. In time series, the key is to account for conditional heteroskedasticity; a favored model is...
Persistent link: https://www.econbiz.de/10011663190
In the presence of conditional heteroskedasticity, inference about the coefficients in a linear regression model these days is typically based on the ordinary least squares estimator in conjunction with using heteroskedasticity consistent standard errors. Similarly, even when the true form of...
Persistent link: https://www.econbiz.de/10011663191
Many researchers seek factors that predict the cross-section of stock returns. The standard methodology sorts stocks according to their factor scores into quantiles and forms a corresponding long-short portfolio. Such a course of action ignores any information on the covariance matrix of stock...
Persistent link: https://www.econbiz.de/10011663197
Constructing joint confidence bands for structural impulse response functions based on a VAR model is a difficult task because of the non-linear nature of such functions. We propose new joint confidence bands that cover the entire true structural impulse response function up to a chosen maximum...
Persistent link: https://www.econbiz.de/10011663204
Constructing joint confidence bands for structural impulse response functions based on a VAR model is a difficult task because of the non-linear nature of such functions. We propose new joint confidence bands that cover the entire true structural impulse response function up to a chosen maximum...
Persistent link: https://www.econbiz.de/10011784287
In many multiple testing problems, the individual null hypotheses (i) concern univariate parameters and (ii) are one-sided. In such problems, power gains can be obtained for bootstrap multiple testing procedures in scenarios where some of the parameters are "deep in the null" by making certain...
Persistent link: https://www.econbiz.de/10011784290
This paper introduces a nonlinear shrinkage estimator of the covariance matrix that does not require recovering the population eigenvalues first. We estimate the sample spectral density and its Hilbert transform directly by smoothing the sample eigenvalues with a variable-bandwidth kernel....
Persistent link: https://www.econbiz.de/10011784298
This paper constructs a new estimator for large covariance matrices by drawing a bridge between the classic Stein (1975) estimator in finite samples and recent progress under large-dimensional asymptotics. Our formula is quadratic: it has two shrinkage targets weighted by quadratic functions of...
Persistent link: https://www.econbiz.de/10012140662