Showing 1 - 3 of 3
Kernel Based Regression (KBR) minimizes a convex risk over a possibly infinite dimensional reproducing kernel Hilbert space. Recently, it was shown that KBR with a least squares loss function may have some undesirable properties from a robustness point of view: even very small amounts of...
Persistent link: https://www.econbiz.de/10008521101
Persistent link: https://www.econbiz.de/10008674104
Kernel Principal Component Analysis extends linear PCA from a Euclidean space to any reproducing kernel Hilbert space. Robustness issues for Kernel PCA are studied. The sensitivity of Kernel PCA to individual observations is characterized by calculating the influence function. A robust Kernel...
Persistent link: https://www.econbiz.de/10008864112