Showing 81 - 90 of 212
Persistent link: https://www.econbiz.de/10013259868
Persistent link: https://www.econbiz.de/10003593771
Designing and pricing new products is one of the most critical activities for a firm, and it is well-known that taking into account consumer preferences for design decisions is essential for products later to be successful in a competitive environment (e.g., Urban and Hauser 1993). Consequently,...
Persistent link: https://www.econbiz.de/10014033607
The most commonly used variant of conjoint analysis is choice-based conjoint (CBC). Here, hierarchical Bayesian (HB) multinomial logit (MNL) models are widely used for preference estimation at the individual respondent level. A new and very flexible approach to address multimodal and skewed...
Persistent link: https://www.econbiz.de/10015404597
The most widely used approaches in hedonic price modelling of real estate data and price index construction are Time Dummy and Imputation methods. Both methods, however, reveal extreme approaches regarding regression modeling of real estate data. In the time dummy approach, the data are pooled...
Persistent link: https://www.econbiz.de/10014319994
Modeling real estate prices in the context of hedonic models often involves fitting a Generalized Additive Model, where only the mean of a (lognormal) distribution is regressed on a set of variables without taking other parameters of the distribution into account. Thus far, the application of...
Persistent link: https://www.econbiz.de/10014494999
Structured additive regression (STAR) models provide a flexible framework for modeling possible nonlinear effects of covariates: They contain the well established frameworks of generalized linear models (GLM) and generalized additive models (GAM) as special cases but also allow a wider class of...
Persistent link: https://www.econbiz.de/10010312215
Quantile regression provides a convenient framework for analyzing the impact of covariates on the complete conditional distribution of a response variable instead of only the mean. While frequentist treatments of quantile regression are typically completely nonparametric, a Bayesian formulation...
Persistent link: https://www.econbiz.de/10010312219
Generalized additive models (GAM) for modelling nonlinear effects of continuous covariates are now well established tools for the applied statistician. In this paper we develop Bayesian GAM?s and extensions to generalized structured additive regression based on one or two dimensional P-splines...
Persistent link: https://www.econbiz.de/10010263507
In this paper we present a nonparametric Bayesian approach for fitting unsmooth or highly oscillating functions in regression models with binary responses. The approach extends previous work by Lang et al. (2002) for Gaussian responses. Nonlinear functions are modelled by first or second order...
Persistent link: https://www.econbiz.de/10010265640