Showing 741 - 750 of 847
Persistent link: https://www.econbiz.de/10006278919
Persistent link: https://www.econbiz.de/10006762351
Persistent link: https://www.econbiz.de/10009029655
Persistent link: https://www.econbiz.de/10009029815
In this paper, we develop a new censored quantile instrumental variable (CQIV) estimator and describe its properties and computation. The CQIV estimator combines Powell (1986) censored quantile regression (CQR) to deal semiparametrically with censoring, with a control variable approach to...
Persistent link: https://www.econbiz.de/10012461661
Quantile regression is an increasingly important empirical tool in economics and other sciences for analyzing the impact of a set of regressors on the conditional distribution of an outcome. Extremal quantile regression, or quantile regression applied to the tails, is of interest in many...
Persistent link: https://www.econbiz.de/10014178700
In this chapter we discuss conceptually high dimensional sparse econometric models as well as estimation of these models using ℓ1-penalization and post-ℓ1-penalization methods. Focusing on linear and nonparametric regression frameworks, we discuss various econometric examples, present basic...
Persistent link: https://www.econbiz.de/10014178799
Quantile regression (QR) is a principal regression method for analyzing the impact of covariates on outcomes. The impact is described by the conditional quantile function and its functionals. In this paper we develop the nonparametric QR series framework, covering many regressors as a special...
Persistent link: https://www.econbiz.de/10014178851
In this paper, we develop a new censored quantile instrumental variable (CQIV) estimator and describe its properties and computation. The CQIV estimator combines Powell (1986) censored quantile regression (CQR) to deal semiparametrically with censoring, with a control variable approach to...
Persistent link: https://www.econbiz.de/10014182968
In this paper we study post-model selection estimators which apply ordinary least squares (ols) to the model selected by first-step penalized estimators, typically lasso. It is well known that lasso can estimate the non-parametric regression function at nearly the oracle rate, and is thus hard...
Persistent link: https://www.econbiz.de/10014196512