Showing 51 - 60 of 446
The intention is to provide a Bayesian formulation of regularized local linear regression, combined with techniques for optimal bandwidth selection. This approach arises from the idea that only those covariates that are found to be relevant for the regression function should be considered by the...
Persistent link: https://www.econbiz.de/10011056430
A data-driven bandwidth selection method for backfitting estimation of semiparametric additive models, when the parametric part is of main interest, is proposed. The proposed method is a double smoothing estimator of the mean-squared error of the backfitting estimator of the parametric terms....
Persistent link: https://www.econbiz.de/10011056600
While forecasting is a common practice in academia, government and business alike, practitioners are often left wondering how to choose the sample for estimating forecasting models. When we forecast inflation in 2014, for example, should we use the last 30 years of data or the last 10 years of...
Persistent link: https://www.econbiz.de/10010950609
In a single index Poisson regression model with unknown link function, the index parameter can be root-n consistently estimated by the method of pseudo maximumum likelihood. In this paper, we study, by simulation arguments, the practical validity of the asymptotic behavior of the pseudo maximum...
Persistent link: https://www.econbiz.de/10010956351
Estimating equations have found wide popularity recently in parametric problems, yielding consistent estimators with asymptotically valid inferences obtained via the sandwich formula. Motivated by a problem in nutritional epidemiology, we use estimating equations to derive nonparametric...
Persistent link: https://www.econbiz.de/10010956402
Optimal bandwidths for local polynomial regression usually involve functionals of the derivatives of the unknown regression function. In the multivariate case, estimates of these functionals are not readily available, primarily because estimating multivariate derivatives is complicated. In this...
Persistent link: https://www.econbiz.de/10010956407
In many regression applications both the independent and dependent variables are measured with error. When this happens, conventional parametric and nonparametric regression techniques are no longer valid. We consider two different nonparametric techniques, regression splines and kernel...
Persistent link: https://www.econbiz.de/10010956490
In this paper we study time-varying coefficient models with time trend function and serially correlated errors to characterize nonlinear, nonstationary and trending phenomenon in time series. Compared with the Nadaraya-Watson method, the local linear approach is developed to estimate the time...
Persistent link: https://www.econbiz.de/10010956577
We consider a two-scaled diffusion system, when drift and diffusion parameters of the 'slow' component are contaminated by the ' fast' unobserved component. The goal is to estimate the dynamic function which is defined by averaging the drift coefficient of the 'slow' component w.r.t. the...
Persistent link: https://www.econbiz.de/10010956607
A data-driven optimal decomposition of time series with trend-cyclical and seasonal components as well as the estimation of derivatives of the trend-cyclical is considered. The time series is smoothed by locally weighted regression with polynomials and trigonometric functions as local...
Persistent link: https://www.econbiz.de/10010958367