Showing 241 - 250 of 250
This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking...
Persistent link: https://www.econbiz.de/10013091885
Portfolio allocation with gross-exposure constraint is an effective method to increase the efficiency and stability of selected portfolios among a vast pool of assets, as demonstrated in Fan et. al. (2008b). The required high-dimensional volatility matrix can be estimated by using high frequency...
Persistent link: https://www.econbiz.de/10013094810
Several novel statistical methods have been developed to estimate large integrated volatility matrices based on high-frequency financial data. To investigate their asymptotic behaviors, they require a sub-Gaussian or finite high-order moment assumption for observed log-returns, which cannot...
Persistent link: https://www.econbiz.de/10013236780
Measuring timely high-resolution socioeconomic outcomes is critical for policy making and evaluation, but hard to reliably obtain. With the help of machine learning and cheaply available data such as social media and nightlight, it is now possible to predict such indices in fine granularity....
Persistent link: https://www.econbiz.de/10013322570
With the severity of the COVID-19 outbreak, we characterize the nature of the growth trajectories of counties in the United States using a novel combination of spectral clustering and the correlation matrix. As the U.S. and the rest of the world are experiencing a severe second wave of...
Persistent link: https://www.econbiz.de/10013251083
Most studies on equity markets using text data focus on English-based specified sentiment dictionaries or topic modeling. However, can we predict the impact of news directly from the text data? How much can we learn from such a direct approach? We present here a new framework for learning text...
Persistent link: https://www.econbiz.de/10013243543
We develop new structural nonparametric methods for estimating conditional asset pricing models using deep neural networks. Our method is guided by economic theory and employs time-varying conditional information on alphas and betas carried by firm-specific characteristics. Contrary to many...
Persistent link: https://www.econbiz.de/10013406180
Estimating and assessing the risk of a large portfolio is an important topic in financial econometrics and risk management. The risk is often estimated by a substitution of a good estimator of the volatility matrix. However, the accuracy of such a risk estimator for large portfolios is largely...
Persistent link: https://www.econbiz.de/10015235613
This paper deals with estimation of high-dimensional covariance with a conditional sparsity structure, which is the composition of a low-rank matrix plus a sparse matrix. By assuming sparse error covariance matrix in a multi-factor model, we allow the presence of the cross-sectional correlation...
Persistent link: https://www.econbiz.de/10015231999
Most papers on high-dimensional statistics are based on the assumption that none of the regressors are correlated with the regression error, namely, they are exogenous. Yet, endogeneity arises easily in high-dimensional regression due to a large pool of regressors and this causes the...
Persistent link: https://www.econbiz.de/10015232000