Showing 41 - 50 of 18,521
This paper features an analysis of major currency exchange rate movements in relation to the US dollar, as constituted in US dollar terms. Euro, British pound, Chinese yuan, and Japanese yen are modelled using a variety of non-linear models, including smooth transition regression models,...
Persistent link: https://www.econbiz.de/10011443686
This study presents an extension of the Gaussian process regression model for multiple-input multiple-output forecasting. This approach allows modelling the cross-dependencies between a given set of input variables and generating a vectorial prediction. Making use of the existing correlations in...
Persistent link: https://www.econbiz.de/10011537542
In the past decade, the popularity of realized measures and various linear models for volatility forecasting has attracted attention in the literature on the price variability of energy markets. However, results that would guide practitioners to a specific estimator and model when aiming for the...
Persistent link: https://www.econbiz.de/10010429924
In this paper we examine the forecast accuracy of linear autoregressive, smooth transition autoregressive (STAR), and neural network (NN) time series models for 47 monthly macroeconomic variables of the G7 economies. Unlike previous studies that typically consider multiple but fixed model...
Persistent link: https://www.econbiz.de/10002127012
This paper contains a forecasting exercise on 30 time series, ranging on several fields, from economy to ecology. The statistical approach to artificial neural networks modelling developed by the author is compared to linear modelling and to other three well-known neural network modelling...
Persistent link: https://www.econbiz.de/10001645582
In this paper we present a Feed-Foward Neural Networks Autoregressive (FFNN-AR) model with genetic algorithms training optimization in order to predict the gross domestic product growth of six countries. Specifically we propose a kind of weighted regression, which can be used for econometric...
Persistent link: https://www.econbiz.de/10013137781
In this paper we present an autoregressive model with neural networks modeling and standard error backpropagation algorithm training optimization in order to predict the gross domestic product (GDP) growth rate of four countries. Specifically we propose a kind of weighted regression, which can...
Persistent link: https://www.econbiz.de/10013137783
The purpose of this paper is to present a neuro-fuzzy approach of financial distress pre-warning model appropriate for risk supervisors, investors and policy makers. We examine a sample of the financial institutions and electronic companies of Taiwan Security Exchange (TSE) from 2002 through...
Persistent link: https://www.econbiz.de/10013138750
In this paper we present the neuro-fuzzy technology for the prediction of economic crisis of USA economy. Our findings support ANFIS models to traditional discrete choice models of Probit and Logit, indicating that the last models are not very useful for forecasting purposes. We have developed a...
Persistent link: https://www.econbiz.de/10013138751
In this paper we present the Radial Basis Neural Network Function. We examine some simple numerical examples of time-series in economics and finance. The forecasting performance is significant superior, especially in financial time-series, to traditional econometric modeling indicating that...
Persistent link: https://www.econbiz.de/10013138753