Showing 1 - 10 of 28,453
Unobserved components time series models decompose a time series into a trend, a season, a cycle, an irregular disturbance, and possibly other components. These models have been successfully applied to many economic time series. The standard assumption of a linear model, often appropriate after...
Persistent link: https://www.econbiz.de/10010326043
Unobserved components time series models decompose a time series into a trend, a season, a cycle, an irregular disturbance, and possibly other components. These models have been successfully applied to many economic time series. The standard assumption of a linear model, often appropriate after...
Persistent link: https://www.econbiz.de/10011374413
This discussion paper resulted in a publication in the <I>Journal of the Royal Statistical Society Series C</I> (2009). Vol. 58, pages 427-448.<I> Unobserved components time series models decompose a time series into a trend, a season, a cycle, an irregular disturbance, and possibly other components....</i></i>
Persistent link: https://www.econbiz.de/10011255581
To gain insights in the current status of the economy, macroeconomic time series are often decomposed into trend, cycle and irregular components. This can be done by nonparametric band-pass filtering methods in the frequency domain or by model-based decompositions based on autoregressive moving...
Persistent link: https://www.econbiz.de/10010325334
Recent releases of X-13ARIMA-SEATS and JDemetra+ enable their users to choose between the non-parametric X-11 and the parametric ARIMA model-based approach to seasonal adjustment for any given time series without the necessity of switching between different software packages. To ease the...
Persistent link: https://www.econbiz.de/10011454019
To gain insights in the current status of the economy, macroeconomic time series are often decomposed into trend, cycle and irregular components. This can be done by nonparametric band-pass filtering methods in the frequency domain or by model-based decompositions based on autoregressive moving...
Persistent link: https://www.econbiz.de/10011346480
Recent releases of X-13ARIMA-SEATS and JDemetra+ enable their users to choose between the non-parametric X-11 and the parametric ARIMA model-based approach to seasonal adjustment for any given time series without the necessity of switching between different software packages. To ease the...
Persistent link: https://www.econbiz.de/10011452778
To gain insights in the current status of the economy, macroeconomic time series are often decomposed into trend, cycle and irregular components. This can be done by nonparametric band-pass filtering methods in the frequency domain or by model-based decompositions based on autoregressive moving...
Persistent link: https://www.econbiz.de/10011256217
To gain insights in the current status of the economy, macroeconomic time series are often decomposed into trend, cycle and irregular components. This can be done by nonparametric band-pass filtering methods in the frequency domain or by model-based decompositions based on autoregressive moving...
Persistent link: https://www.econbiz.de/10005137023
The purpose of this chapter is to provide a comprehensive treatment of likelihood inference for state space models. These are a class of time series models relating an observable time series to quantities called states, which are characterized by a simple temporal dependence structure, typically...
Persistent link: https://www.econbiz.de/10011109316