Showing 171 - 180 of 475
A stated objective of the Australian Plain Packaging Act 2011 is to reduce smoking prevalence. We use the Roy Morgan Single Source (Australia) data set over the time period January 2001 to December 2013 to analyze whether this goal has been achieved in the first year since the implementation. In...
Persistent link: https://www.econbiz.de/10011282496
Linear regression models form the cornerstone of applied research in economics and other scientific disciplines. When conditional heteroskedasticity is present, or at least suspected, the practice of reweighting the data has long been abandoned in favor of estimating model parameters by ordinary...
Persistent link: https://www.econbiz.de/10011282509
This paper injects factor structure into the estimation of time-varying, large-dimensional covariance matrices of stock returns. Existing factor models struggle to model the covariance matrix of residuals in the presence of conditional heteroskedasticity in large universes. Conversely,...
Persistent link: https://www.econbiz.de/10011969201
Applied researchers often want to make inference for the difference of a given performance measure for two investment strategies. In this paper, we consider the class of performance measures that are smooth functions of population means of the underlying returns; this class is very rich and...
Persistent link: https://www.econbiz.de/10011969216
Many econometric and data-science applications require a reliable estimate of the covariance matrix, such as Markowitz portfolio selection. When the number of variables is of the same magnitude as the number of observations, this constitutes a difficult estimation problem; the sample covariance...
Persistent link: https://www.econbiz.de/10012026512
Under rotation-equivariant decision theory, sample covariance matrix eigenvalues can be optimally shrunk by recombining sample eigenvectors with a (potentially nonlinear) function of the unobservable population covariance matrix. The optimal shape of this function reflects the loss/risk that is...
Persistent link: https://www.econbiz.de/10012040363
This paper introduces a new method for deriving covariance matrix estimators that are decision-theoretically optimal within a class of nonlinear shrinkage estimators. The key is to employ large-dimensional asymptotics: the matrix dimension and the sample size go to infinity together, with their...
Persistent link: https://www.econbiz.de/10011663161
Markowitz (1952) portfolio selection requires an estimator of the covariance matrix of returns. To address this problem, we promote a nonlinear shrinkage estimator that is more flexible than previous linear shrinkage estimators and has just the right number of free parameters (that is, the...
Persistent link: https://www.econbiz.de/10011663163
This paper shows how asymptotically valid inference in regression models based on the weighted least squares (WLS) estimator can be obtained even when the model for reweighting the data is misspecified. Like the ordinary least squares estimator, the WLS estimator can be accompanied by...
Persistent link: https://www.econbiz.de/10011663166
This paper deals with certain estimation problems involving the covariance matrix in large dimensions. Due to the breakdown of finite-dimensional asymptotic theory when the dimension is not negligible with respect to the sample size, it is necessary to resort to an alternative framework known as...
Persistent link: https://www.econbiz.de/10011663174