Showing 31 - 40 of 96
Most of the Bayesian nonparametric models for non–exchangeable data that are used in applications are based on some extension to the multivariate setting of the Dirichlet process, the best known being MacEachern’s dependent Dirichlet process. A comparison of two recently introduced classes...
Persistent link: https://www.econbiz.de/10010667872
Random probability measures are the main tool for Bayesian nonparametric inference, with their laws acting as prior distributions. Many well–known priors used in practice admit different, though (in distribution) equivalent, representations. Some of these are convenient if one wishes to...
Persistent link: https://www.econbiz.de/10010587723
Species sampling problems have a long history in ecological and biological studies and a number of issues, including the evaluation of species richness, the design of sampling experiments, the estimation of rare species variety, are to be addressed. Such inferential problems have recently...
Persistent link: https://www.econbiz.de/10010587725
Persistent link: https://www.econbiz.de/10010998671
Persistent link: https://www.econbiz.de/10006605487
Persistent link: https://www.econbiz.de/10003241969
Persistent link: https://www.econbiz.de/10003549609
In Bayesian nonparametric inference, random discrete probability measures are commonly used as priors within hierarchical mixture models for density estimation and for inference on the clustering of the data. Recently it has been shown that they can also be exploited in species sampling...
Persistent link: https://www.econbiz.de/10010343850
Persistent link: https://www.econbiz.de/10010343911
Persistent link: https://www.econbiz.de/10014321841