Showing 1 - 10 of 710
We propose to estimate the parameters of the Market Share Attraction Model (Cooper & Nakanishi, 1988; Fok & Franses, 2004) in a novel way by using a non-parametric technique for function estimation called Support Vector Regressions (SVR) (Vapnik, 1995; Smola, 1996). Traditionally, the parameters of the...
Persistent link: https://www.econbiz.de/10004991089
Several instance-based large-margin classi¯ers have recently been put forward in the literature: Support Hyperplanes, Nearest Convex Hull classifier, and Soft Nearest Neighbor. We examine those techniques from a common fit-versus-complexity framework and study the links be- tween them....
Persistent link: https://www.econbiz.de/10004991123
A new classification method is proposed, called Support Hy- perplanes (SHs). To solve the binary classification task, SHs consider the set of all hyperplanes that do not make classification mistakes, referred to as semi-consistent hyperplanes. A test object is classified using that...
Persistent link: https://www.econbiz.de/10004991143
To minimize the primal support vector machine (SVM) problem, we propose to use iterative majorization. To do so, we propose to use it- erative majorization. To allow for nonlinearity of the predictors, we use (non)monotone spline transformations. An advantage over the usual ker- nel approach in...
Persistent link: https://www.econbiz.de/10005450850
Support vector machines (SVM) are becoming increasingly popular for the prediction of a binary dependent variable. SVMs perform very well with respect to competing techniques. Often, the solution of an SVM is obtained by switching to the dual. In this paper, we stick to the primal support vector...
Persistent link: https://www.econbiz.de/10005450870
Consider the classification task of assigning a test object to one of two or more possible groups, or classes. An intuitive way to proceed is to assign the object to that class, to which the distance is minimal. As a distance measure to a class, we propose here to use the distance to the convex...
Persistent link: https://www.econbiz.de/10005450881
Multidimensional scaling is a statistical technique to visualize dissimilarity data. In multidimensional scaling, objects are represented as points in a usually two dimensional space, such that the distances between the points match the observed dissimilarities as closely as possible. Here, we...
Persistent link: https://www.econbiz.de/10004991099
In analysis of variance, there is usually little attention for interpreting the terms of the effects themselves, especially for interaction effects. One of the reasons is that the number of interaction-effect terms increases rapidly with the number of predictor variables and the number of...
Persistent link: https://www.econbiz.de/10004991113
Multidimensional scaling aims at reconstructing dissimilarities between pairs of objects by distances in a low dimensional space. However, in some cases the dissimilarity itself is not known, but the range, or a histogram of the dissimilarities is given. This type of data fall in the wider class...
Persistent link: https://www.econbiz.de/10004991122
This article proposes a modified method for the construction of diffusion indexes in macroeconomic forecasting using principal component regres- sion. The method aims to maximize the amount of variance of the origi- nal predictor variables retained by the diffusion indexes, by matching the data...
Persistent link: https://www.econbiz.de/10004972197