Showing 81 - 90 of 1,351
The empirical best linear unbiased predictor (EBLUP) in the linear mixed model (LMM) is useful for the small area estimation in the sense of increasing the precision of estimation of small area means. However, one potential difficulty of EBLUP is that when aggregated, the overall estimate for a...
Persistent link: https://www.econbiz.de/10009395791
The estimation of a linear combination of several restricted location parameters is addressed from a decision-theoretic point of view. A bench-mark estimator of the linear combination is an unbiased estimator, which is minimax, but inadmissible relative to the mean squared error. An interesting...
Persistent link: https://www.econbiz.de/10008603172
This paper studies minimaxity of estimators of a set of linear combinations of location parameters μi, i = 1, . . . , k under quadratic loss. When each location parameter is known to be positive, previous results about minimaxity or non-minimaxity are extended from the case of estimating a...
Persistent link: https://www.econbiz.de/10008800265
   In linear mixed models, the conditional Akaike Information Criterion (cAIC) is a procedure for variable selection in light of the prediction of specific clusters or random effects. This is useful in problems involving prediction of random effects such as small area estimation,...
Persistent link: https://www.econbiz.de/10010679312
   In estimation of ratio of variances in two normal distributions with unknown means, it has been shown in the literature that simple and crude ratio estimators based on two sample variances are dominated by shrinkage estimators using information contained in sample means. Of...
Persistent link: https://www.econbiz.de/10010693390
   The problem of estimating the covariance matrix of normal and non-normal distributions is addressed when both the sample size and the dimension of covariance matrix tend to innity. In this paper, we consider a class of ridge-type estimators which are linear combinations of the...
Persistent link: https://www.econbiz.de/10010700344
Consider the problem of testing a linear hypothesis of regression coefficients in a general linear regression model with an error term having a covariance matrix involving several nuisance parameters. Three typical test statistics of Wald, Score and Likelihood Ratio (LR) and their Bartlett...
Persistent link: https://www.econbiz.de/10010665019
In the problem of selecting the explanatory variables in the linear mixed model, we address the derivation of the (unconditional or marginal) Akaike information criterion (AIC) and the conditional AIC (cAIC). The covariance matrices of the random effects and the error terms include unknown...
Persistent link: https://www.econbiz.de/10008472016
The estimation of a linear combination of several restricted location parameters is addressed from a decision-theoretic point of view. The corresponding linear combination of the best location equivariant and the unrestricted unbiased estimators is minimax. Since the locations are restricted, it...
Persistent link: https://www.econbiz.de/10008460989
The problem of estimating the large covariance matrix of both normal and non-normal distributions is addressed. In convex combinations of the sample covariance matrix and the identity matrix multiplied by a scalor statistic, we suggest a new estimator of the optimal weight based on...
Persistent link: https://www.econbiz.de/10011213965