Showing 91 - 100 of 228
Motivated by an example in nutritional epidemiology, we investigate some design and analysis aspects of linear measurement error models with missing surrogate data. The specific problem investigated consists of an initial large sample in which the response (a food frequency questionnaire, FFQ)...
Persistent link: https://www.econbiz.de/10009631748
In many regression applications both the independent and dependent variables are measured with error. When this happens, conventional parametric and nonparametric regression techniques are no longer valid. We consider two different nonparametric techniques, regression splines and kernel...
Persistent link: https://www.econbiz.de/10009631749
In this paper we consider the polynomial regression model in the presence of multiplicative measurement error in the predictor. Consistent parameter estimates and their associated standard errors are derived. Two general methods are considered, with the methods differing in their assumptions...
Persistent link: https://www.econbiz.de/10009631750
There are three major points to this article: 1. Measurement error causes biases in regression fits. The line one would obtain if one could accurately measure exposure to environmental lead media will differ in important ways when one measures exposure with error. 2. The effects of measurement...
Persistent link: https://www.econbiz.de/10009631751
We describe methods for estimating the regression function nonparametrically and for estimating the variance components in a simple variance component model which is sometimes used for repeated measures data or data with a simple clustered structure. We consider a number of different ways of...
Persistent link: https://www.econbiz.de/10009631752
In many problems one wants to model the relationship between a response Y and a covariate X. Sometimes it is difficult, expensive, or even impossible to observe X directly, but one can instead observe a substitute variable W which is easier to obtain. By far the most common model for the...
Persistent link: https://www.econbiz.de/10009631755
In parametric regression problems, estimation of the parameter of interest is typically achieved via the solution of a set of unbiased estimating equations. We are interested in problems where in addition to this parameter, the estimating equations consist of an unknown nuisance function which...
Persistent link: https://www.econbiz.de/10009631757
We consider the partially linear model relating a response Y to predictors (X,T) with mean function XT ß + g (T) when the X's are measured with additive error. The semiparametric likelihood estimate of Severini and Staniswalis (1994) leads to biased estimates of both the parameter ß and the...
Persistent link: https://www.econbiz.de/10009657130
Persistent link: https://www.econbiz.de/10003878182
Persistent link: https://www.econbiz.de/10003878198