Ren, Jian-Jian; Riddlesworth, Tonya - In: Annals of the Institute of Statistical Mathematics 66 (2014) 5, pp. 913-930
This article considers the estimation for bivariate distribution function (d.f.) <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$F_0(t, z)$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <msub> <mi>F</mi> <mn>0</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </math> </EquationSource> </InlineEquation> of survival time <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$T$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi>T</mi> </math> </EquationSource> </InlineEquation> and covariate variable <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$Z$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi>Z</mi> </math> </EquationSource> </InlineEquation> based on bivariate data where <InlineEquation ID="IEq4"> <EquationSource Format="TEX">$$T$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi>T</mi> </math> </EquationSource> </InlineEquation> is subject to right censoring. We derive the empirical...</equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation>