Showing 11 - 20 of 57,000
Classical claims reserving methods act on so-called claims reserving triangles which are aggregated insurance portfolios. A crucial assumption in classical claims reserving is that these aggregated portfolios are sufficiently homogeneous so that a coarse reserving algorithm can be applied. We...
Persistent link: https://www.econbiz.de/10012934040
I propose a flexible non-parametric method using Recurrent Neural Networks (RNN) to estimate a generalized model of expectation formation. This approach does not rely on restrictive assumptions of functional forms and parametric methods yet nests the standard approaches of empirical studies on...
Persistent link: https://www.econbiz.de/10013250843
Deep learning has substantially advanced the state of the art in computer vision, natural language processing, and other fields. The paper examines the potential of deep learning for exchange rate forecasting. We systematically compare long short- term memory networks and gated recurrent units...
Persistent link: https://www.econbiz.de/10012827850
Predicting the number of outstanding claims (IBNR) is a central problem in actuarial loss reserving. Classical approaches like the Chain Ladder method rely on aggregating the available data in form of loss triangles, thereby wasting potentially useful additional claims information. A new...
Persistent link: https://www.econbiz.de/10013323137
Economic policymaking relies upon accurate forecasts of economic conditions. Current methods for unconditional forecasting are dominated by inherently linear models that exhibit model dependence and have high data demands. We explore deep neural networks as an opportunity to improve upon...
Persistent link: https://www.econbiz.de/10012946449
In asset pricing, most studies focus on finding new factors such as macroeconomic factors or firm characteristics to explain risk premium. Investigating whether these factors are useful in forecasting stock returns remains active research in the field of finance and computer science. This paper...
Persistent link: https://www.econbiz.de/10014235825
We review key aspects of forecasting using nonlinear models. Because economic models are typically misspecified, the resulting forecasts provide only an approximation to the best possible forecast. Although it is in principle possible to obtain superior approximations to the optimal forecast...
Persistent link: https://www.econbiz.de/10014023697
In this paper, we propose a localized neural network (LNN) model and then develop the LNN based estimation and inferential procedures for dependent data in both cases with quantitative/qualitative outcomes. We explore the use of identification restrictions from a nonparametric regression...
Persistent link: https://www.econbiz.de/10014347671
Recently, with the development of financial markets and due to the importance of these markets and their close relationship with other macroeconomic variables, using advanced mathematical models with complicated structures for forecasting these markets has become very popular. Besides, neural...
Persistent link: https://www.econbiz.de/10011112434
We consider the problem of estimating the conditional quantile of a time series at time t given observations of the same and perhaps other time series availableat time t − 1. We discuss sieve estimates which are a nonparametric versions ofthe Koenker-Bassett regression quantiles and do not...
Persistent link: https://www.econbiz.de/10005861197