Showing 31 - 40 of 105,479
This paper evaluates the effect of energy trade networks on the price volatility of coal, oil, natural gas, and electricity. This research conducts a longitudinal analysis using a time series of static coal trade networks to generate a dynamic trade network. It uses the component causality index...
Persistent link: https://www.econbiz.de/10013211613
Textual analysis of news articles is increasingly important in predicting stock prices. Previous research has intensively utilized the textual analysis of news and other firm-related documents in volatility prediction models. It has been demonstrated that the news may be related to abnormal...
Persistent link: https://www.econbiz.de/10011881761
This paper develops textual sentiment measures for China's stock market by extracting the textual tone of 60 million messages posted on a major online investor forum in China from 2008 to 2018. We conduct sentiment extraction by using both conventional dictionary methods based on customized word...
Persistent link: https://www.econbiz.de/10012125620
Purpose – We use a large and rich data set consisting of over 123,000 single-family houses sold in Switzerland between 2005 and 2017 to investigate the accuracy and volatility of different methods for estimating and updating hedonic valuation models.Design/methodology/approach – We apply six...
Persistent link: https://www.econbiz.de/10011976945
We apply machine learning models to forecast intraday realized volatility (RV), by exploiting commonality in intraday volatility via pooling stock data together, and by incorporating a proxy for the market volatility. Neural networks dominate linear regressions and tree models in terms of...
Persistent link: https://www.econbiz.de/10013296651
For stock market predictions, the essence of the problem is usually predicting the magnitude and direction of the stock price movement as accurately as possible. There are different approaches (e.g., econometrics and machine learning) for predicting stock returns. However, it is non-trivial to...
Persistent link: https://www.econbiz.de/10013305881
This paper investigates the application of neural basis expansion analysis with exogenous variables (NBEATSx) in the prediction of daily stock realized volatility for various time steps. It compares NBEATSx’s forecasting accuracy and robustness with several commonly used models, namely...
Persistent link: https://www.econbiz.de/10014350170
This paper analyzes the performance of temporal fusion transformers in forecasting realized volatilities of stocks listed in the S&P 500 in volatile periods by comparing the predictions with those of state-of-the-art machine learning methods as well as GARCH models. The models are trained on...
Persistent link: https://www.econbiz.de/10013552533
We present a computationally tractable method for simulating arbitrage free implied volatility surfaces. We illustrate how our method may be combined with a factor model for the implied volatility surface to generate dynamic scenarios for arbitrage-free implied volatility surfaces. Our approach...
Persistent link: https://www.econbiz.de/10014258455
Echo State Neural Networks (ESN) were applied to forecast the realized variance time series of 19 major stock market indices. Symmetric ESN and asymmetric AESN models were constructed and compared with the benchmark realized variance models HAR and AHAR that approximate the long memory of the...
Persistent link: https://www.econbiz.de/10011818288