Showing 11 - 20 of 43,929
Using account level credit-card data from six major commercial banks from January 2009 to December 2013, we apply machine-learning techniques to combined consumer-tradeline, credit-bureau, and macroeconomic variables to predict delinquency. In addition to providing accurate measures of loss...
Persistent link: https://www.econbiz.de/10013004558
This study analyses credit default risk for firms in the Asian and Pacific region by applying two methodologies: a Support Vector Machine (SVM) and a logistic regression (Logit). Among different financial ratios suggested as predictors of default, leverage ratios and the company size display a...
Persistent link: https://www.econbiz.de/10009125559
Predicting default probabilities is important for firms and banks to operate successfully and to estimate their specific risks. There are many reasons to use nonlinear techniques for predicting bankruptcy from financial ratios. Here we propose the so called Support Vector Machine (SVM) to...
Persistent link: https://www.econbiz.de/10012966238
This study analyses credit default risk for firms in the Asian and Pacific region by applying two methodologies: a Support Vector Machine (SVM) and a logistic regression (Logit). Among different financial ratios suggested as predictors of default, leverage ratios and the company size display a...
Persistent link: https://www.econbiz.de/10012966310
This paper explores the ability of the Machine Learning (ML) techniques to calibrate models that replicate the outputs of the Vasicek credit risk model. This model measures the loss distribution of a portfolio made up of loans that can be exposed to multiple systemic factors and it is widely...
Persistent link: https://www.econbiz.de/10013230146
This study analyses credit default risk for firms in the Asian and Pacific region by applying two methodologies: a Support Vector Machine (SVM) and a logistic regression (Logit). Among different financial ratios suggested as predictors of default, leverage ratios and the company size display a...
Persistent link: https://www.econbiz.de/10010281539
We are interested in forecasting bankruptcies in a probabilistic way. Specifically, we compare the classification performance of several statistical and machine-learning techniques, namely discriminant analysis (Altman's Z-score), logistic regression, least-squares support vector machines and...
Persistent link: https://www.econbiz.de/10010322572
We propose a new nonlinear classification method based on a Bayesian "sum-of-trees" model, the Bayesian Additive Classification Tree (BACT), which extends the Bayesian Additive Regression Tree (BART) method into the classification context. Like BART, the BACT is a Bayesian nonparametric additive...
Persistent link: https://www.econbiz.de/10003635971
We are interested in forecasting bankruptcies in a probabilistic way. Specifically, we compare the classification performance of several statistical and machine-learning techniques, namely discriminant analysis (Altman's Z-score), logistic regression, least-squares support vector machines and...
Persistent link: https://www.econbiz.de/10003928976
We are interested in forecasting bankruptcies in a probabilistic way. Specifcally, we compare the classifcation performance of several statistical and machine-learning techniques, namely discriminant analysis (Altman's Z-score), logistic regression, least-squares support vector machines and...
Persistent link: https://www.econbiz.de/10013153025