Showing 91 - 100 of 173
J.M. Keynes (1911) shows how distributions look like for which the arithmetic, the geometric and the harmonic mean are most probable values. We propose a general class of distributions for which the quasi-arithmetic means are ML-estimators such that these distributions can be transformed into an...
Persistent link: https://www.econbiz.de/10010310502
Persistent link: https://www.econbiz.de/10000815213
Persistent link: https://www.econbiz.de/10000823589
Persistent link: https://www.econbiz.de/10000420684
Persistent link: https://www.econbiz.de/10000335551
It is well known that the arithmetic mean of two possibly differentcopulas forms a copula, again. More general, we focus on theweighted power mean (WPM) of two arbitrary copulas which is notnecessary a copula again, as different counterexamples reveal. However,various conditions regarding the...
Persistent link: https://www.econbiz.de/10008911518
Keynes (1911) derived general forms of probability density functions for which the “most probable value” is given by the arithmetic mean, the geometric mean, the harmonic mean, or the median. His approach was based on indirect (i.e., posterior) distributions and used a constant prior...
Persistent link: https://www.econbiz.de/10003894722
Persistent link: https://www.econbiz.de/10003898684
Persistent link: https://www.econbiz.de/10003898685
Es ist mittlerweile weitgehend unbestritten, dass der demographische Wandel eine grundlegende Reform der gesetzlichen Rentenversicherung erforderlich macht. Dies soll im Wesentlichen durch die Einführung einer Zusatzrente auf Kapitalbasis (Teilkapitaldeckungsverfahren) erfolgen. Der Beitrag...
Persistent link: https://www.econbiz.de/10003898745