Showing 1 - 10 of 44,920
This paper proposes a strategy to increase the efficiency of forecast combination. Given the availability of a wide range of forecasts for the same variable of interest, our goal is to apply combining methods to a restricted set of models. To this aim, a hierarchical procedure based on an...
Persistent link: https://www.econbiz.de/10010293990
This paper proposes a strategy to increase the efficiency of forecast combining methods. Given the availability of a wide range of forecasting models for the same variable of interest, our goal is to apply combining methods to a restricted set of models. To this aim, an algorithm procedure based...
Persistent link: https://www.econbiz.de/10010294027
This paper proposes a strategy to increase the efficiency of forecast combination. Given the availability of a wide range of forecasts for the same variable of interest, our goal is to apply combining methods to a restricted set of models. To this aim, a hierarchical procedure based on an...
Persistent link: https://www.econbiz.de/10005039658
This paper proposes a strategy to increase the efficiency of forecast combining methods. Given the availability of a wide range of forecasting models for the same variable of interest, our goal is to apply combining methods to a restricted set of models. To this aim, an algorithm procedure based...
Persistent link: https://www.econbiz.de/10005040590
Persistent link: https://www.econbiz.de/10012406063
Clark and McCracken (2008) argue that combining real-time point forecasts from VARs of output, prices and interest rates improves point forecast accuracy in the presence of uncertain model instabilities. In this paper, we generalize their approach to consider forecast density combinations and...
Persistent link: https://www.econbiz.de/10012143681
This article provides a discussion of Clements and Galvão’s “Forecasting with Vector Autoregressive Models of Data Vintages: US output growth and inflation.” Clements and Galvão argue that a multiple-vintage VAR model can be useful for forecasting data that are subject to revisions....
Persistent link: https://www.econbiz.de/10009421688
Automatic forecasts of large numbers of univariate time series are often needed in business and other contexts. We describe two automatic forecasting algorithms that have been implemented in the forecast package for R. The first is based on innovations state space models that underly exponential...
Persistent link: https://www.econbiz.de/10005149030
We use data generated by a macroeconomic DSGE model to study the relative benefits of forecast combinations based on forecast-encompassing tests relative to simple uniformly weighted forecast averages across rival models. Assumed rival models are four linear autoregressive specifications, one of...
Persistent link: https://www.econbiz.de/10010294019
We investigate whether and to what extent multiple encompassing tests may help determine weights for forecast averaging in a standard vector autoregressive setting. To this end we consider a new test-based procedure, which assigns non-zero weights to candidate models that add information not...
Persistent link: https://www.econbiz.de/10010294025