Showing 31 - 40 of 20,121
We study a cluster-robust variance estimator (CRVE) for regression models with clustering in two dimensions that was proposed in Cameron, Gelbach, and Miller (2011). We prove that this CRVE is consistent and yields valid inferences under precisely stated assumptions about moments and cluster...
Persistent link: https://www.econbiz.de/10011939437
We consider estimation and inference in fractionally integrated time series models driven by shocks which can display conditional and unconditional heteroskedasticity of unknown form. Although the standard conditional sum-of-squares (CSS) estimator remains consistent and asymptotically normal in...
Persistent link: https://www.econbiz.de/10011939441
We study asymptotic inference based on cluster-robust variance estimators for regression models with clustered errors, focusing on the wild cluster bootstrap and the ordinary wild bootstrap. We state conditions under which both asymptotic and bootstrap tests and confidence intervals will be...
Persistent link: https://www.econbiz.de/10011939450
The wild bootstrap was originally developed for regression models with heteroskedasticity of unknown form. Over the past thirty years, it has been extended to models estimated by instrumental variables and maximum likelihood, and to ones where the error terms are (perhaps multi-way) clustered....
Persistent link: https://www.econbiz.de/10011939457
Various versions of the wild bootstrap are studied as applied to regression models with heteroskedastic errors. We develop formal Edgeworth expansions for the error in the rejection probability (ERP) of wild bootstrap tests based on asymptotic t statistics computed with a heteroskedasticity...
Persistent link: https://www.econbiz.de/10011940627
There are many bootstrap methods that can be used for econometric analysis. In certain circumstances, such as regression models with independent and identically distributed error terms, appropriately chosen bootstrap methods generally work very well. However, there are many other cases, such as...
Persistent link: https://www.econbiz.de/10011940650
This paper surveys bootstrap and Monte Carlo methods for testing hypotheses in econometrics. Several different ways of computing bootstrap P values are discussed, including the double bootstrap and the fast double bootstrap. It is emphasized that there are many different procedures for...
Persistent link: https://www.econbiz.de/10011940741
We propose a wild bootstrap procedure for linear regression models estimated by instrumental variables. Like other bootstrap procedures that we have proposed elsewhere, it uses efficient estimates of the reduced-form equation(s). Unlike them, it takes account of possible heteroskedasticity of...
Persistent link: https://www.econbiz.de/10011940749
This paper studies the properties of the wild bootstrap-based test proposed in Cameron et al. (2008) in settings with clustered data. Cameron et al. (2008) provide simulations that suggest this test works well even in settings with as few as five clusters, but existing theoretical analyses of...
Persistent link: https://www.econbiz.de/10011941470
Abstract We propose a generalization of the wild bootstrap of Wu (1986) and Liu (1988) based upon perturbing the scores of M-estimators. This "score bootstrap" procedure avoids recomputing the estimator in each bootstrap iteration, making it substantially less costly to compute than the...
Persistent link: https://www.econbiz.de/10014612539