Showing 1 - 10 of 31,081
Automatic forecasts of large numbers of univariate time series are often needed in business and other contexts. We describe two automatic forecasting algorithms that have been implemented in the forecast package for R. The first is based on innovations state space models that underly exponential...
Persistent link: https://www.econbiz.de/10005149030
variances. The eleven models are those with additive errors and either multiplicative trend or multiplicative seasonality, as … well as the models with multiplicative errors, multiplicative trend and additive seasonality. The multiplicative Holt … be mixed with additive seasonality. …
Persistent link: https://www.econbiz.de/10005581140
We review the past 25 years of time series research that has been published in journals managed by the International Institute of Forecasters (Journal of Forecasting 1982-1985; International Journal of Forecasting 1985-2005). During this period, over one third of all papers published in these...
Persistent link: https://www.econbiz.de/10005427625
We consider the properties of nonlinear exponential smoothing state space models under various assumptions about the innovations, or error, process. Our interest is restricted to those models that are used to describe non-negative observations, because many series of practical interest are so...
Persistent link: https://www.econbiz.de/10005125278
We provide a new approach to automatic business forecasting based on an extended range of exponential smoothing methods. Each method in our taxonomy of exponential smoothing methods can be shown to be equivalent to the forecasts obtained from a state space model. This allows (1) the easy...
Persistent link: https://www.econbiz.de/10005427616
The state space approach to modelling univariate time series is now widely used both in theory and in applications. However, the very richness of the framework means that quite different model formulations are possible, even when they purport to describe the same phenomena. In this paper, we...
Persistent link: https://www.econbiz.de/10005427626
In the exponential smoothing approach to forecasting, restrictions are often imposed on the smoothing parameters which ensure that certain components are exponentially weighted averages. In this paper, a new general restriction is derived on the basis that the one-step ahead prediction error can...
Persistent link: https://www.econbiz.de/10005149124
In this article we discuss invertibility conditions for some state space models, including the models that underly simple exponential smoothing, Holt's linear method, Holt-Winters' additive method and damped trend versions of Holt's and Holt-Winters' methods. The parameter space for which the...
Persistent link: https://www.econbiz.de/10005149126
A new automatic forecasting procedure is proposed based on a recent exponential smoothing framework which incorporates a Box-Cox transformation and ARMA residual corrections. The procedure is complete with well-defined methods for initialization, estimation, likelihood evaluation, and analytical...
Persistent link: https://www.econbiz.de/10008467331
We investigate intradaily seasonal patterns on the distribution of high frequency financial returns. Using quantile regression we show the expansions and shrinks of the probability law through the day for three years of 15 minutes sampled stock returns. Returns are more dispersed and less...
Persistent link: https://www.econbiz.de/10005008604