Showing 1 - 10 of 325
Climate change is likely to have substantial effects on irrigated agriculture. Extreme climate events such as droughts are likely to become more common. These patterns are evident in median projections of climate change for the Murray–Darling Basin in Australia. Understanding climate change...
Persistent link: https://www.econbiz.de/10008875873
Helicoverpa spp. (heliothis) are a major insect pest of cotton, grains and horticulture in the Murray‐ Darling Basin. Climate change is likely to make conditions more favourable for heliothis. This could cause regional comparative advantages in irrigation systems to change as management costs...
Persistent link: https://www.econbiz.de/10008738901
Questions relating to the allocation and management of risk have played a central role in the development of the National Water Initiative, particularly as it has applied to the Murray-Darling Basin. The central issues of efficiency and equity in allocations are best understood by considering...
Persistent link: https://www.econbiz.de/10008585978
The MurrayÐDarling Basin comprises over 1 million square kilometres; it lies within four states and one territory; and over 12,800 gigalitres of irrigation water is used to produce over 40 per cent of the nation's gross value of agricultural production. The supply of water for irrigation is...
Persistent link: https://www.econbiz.de/10008585979
It is likely that climate change will be associated with reductions in inflows of water to the Murray–Darling Basin In this paper, we analyse the effects of climate change in the Murray–Darling Basin, using a simulation model that incorporates a state-contingent representation of...
Persistent link: https://www.econbiz.de/10008585993
The Murray-Darling Basin comprises over 1 million km2; it lies within four states and one territory; and over 12, 800 GL of irrigation water is used to produce over 40% of the nation's gross value of agricultural production. This production is used by a diverse collection of some-times mutually...
Persistent link: https://www.econbiz.de/10008585994
The construction of the Snowy Mountains Hydro-electric Scheme in the 1960s resulted in the diversion of 99% of the Snowy River’s natural flow into the Murray and Murrumbidgee river systems. In 2000, the NSW, Victorian and Commonwealth governments agreed to restore between 21 per cent and...
Persistent link: https://www.econbiz.de/10008585997
Climate change is likely to have substantial effects on irrigated agriculture. It is anticipated that many areas that are already dry will become drier, while areas that already receive high rainfall may experience further increases. Extreme climate events such as droughts are likely to become...
Persistent link: https://www.econbiz.de/10008456768
Large scale forest plantations in the Murray-Darling Basin may be embraced as a carbon sequestration mechanism under a Carbon Pollution Reduction Scheme. However, increased tree plantation will be associated with reduced inflows to river systems because of increased transpiration, interception...
Persistent link: https://www.econbiz.de/10008456769
The Murray-Darling Basin faces increasing pressure on water quantity and quality. In 2006-07, salt interception schemes implemented as part of the Murray–Darling Basin Salinity Management strategy removed over 470,000 tonnes of salt from the water supply, reducing the salinity of water...
Persistent link: https://www.econbiz.de/10008456770