Showing 11 - 20 of 5,828
We study the shapes of the implied volatility when the underlying distribution has an atom at zero. We show that the behaviour at small strikes is uniquely determined by the mass of the atom up to the third asymptotic order, under mild assumptions on the remaining distribution on the positive...
Persistent link: https://www.econbiz.de/10010907983
We provide a full characterisation of the large-maturity forward implied volatility smile in the Heston model. Although the leading decay is provided by a fairly classical large deviations behaviour, the algebraic expansion providing the higher-order terms highly depends on the parameters, and...
Persistent link: https://www.econbiz.de/10010941085
In the recent years, banks have sold structured products such as worst-of options, Everest and Himalayas, resulting in a short correlation exposure. They have hence become interested in offsetting part of this exposure, namely buying back correlation. Two ways have been proposed for such a...
Persistent link: https://www.econbiz.de/10008547903
We study here the large-time behaviour of all continuous affine stochastic volatility models (in the sense of Keller-Ressel) and deduce a closed-form formula for the large-maturity implied volatility smile. Based on refinements of the Gartner-Ellis theorem on the real line, our proof reveals...
Persistent link: https://www.econbiz.de/10010600088
This note studies an issue relating to essential smoothness that can arise when the theory of large deviations is applied to a certain option pricing formula in the Heston model. The note identifies a gap, based on this issue, in the proof of Corollary 2.4 in \cite{FordeJacquier10} and describes...
Persistent link: https://www.econbiz.de/10009216785
Let $\sigma_t(x)$ denote the implied volatility at maturity $t$ for a strike $K=S_0 e^{xt}$, where $x\in\bbR$ and $S_0$ is the current value of the underlying. We show that $\sigma_t(x)$ has a uniform (in $x$) limit as maturity $t$ tends to infinity, given by the formula...
Persistent link: https://www.econbiz.de/10009251484
In this paper we prove an approximate formula expressed in terms of elementary functions for the implied volatility in the Heston model. The formula consists of the constant and first order terms in the large maturity expansion of the implied volatility function. The proof is based on...
Persistent link: https://www.econbiz.de/10008595893
In this paper we investigate the asymptotics of forward-start options and the forward implied volatility smile in the Heston model as the maturity approaches zero. We prove that the forward smile for out-of-the-money options explodes and compute a closed-form high-order expansion detailing the...
Persistent link: https://www.econbiz.de/10010690369
In this article we propose a generalisation of the recent work of Gatheral and Jacquier on explicit arbitrage-free parameterisations of implied volatility surfaces. We also discuss extensively the notion of arbitrage freeness and Roger Lee's moment formula using the recent analysis by Roper. We...
Persistent link: https://www.econbiz.de/10010699023
We consider a class of assets whose risk-neutral pricing dynamics are described by an exponential L\'evy-type process subject to default. The class of processes we consider features locally-dependent drift, diffusion and default-intensity as well as a locally-dependent L\'evy measure. Using...
Persistent link: https://www.econbiz.de/10010639415