Showing 41 - 50 of 343
In this paper we consider ML estimation for a broad class of parameter-driven models for discrete dependent variables with spatial correlation. Under this class of models, which includes spatial discrete choice models, spatial Tobit models and spatial count data models, the dependent variable is...
Persistent link: https://www.econbiz.de/10009685715
We develop a numerical procedure that facilitates efficient likelihood evaluation in applications involving non-linear and non-Gaussian state-space models. The procedure approximates necessary integrals using continuous approximations of target densities. Construction is achieved via efficient...
Persistent link: https://www.econbiz.de/10003828209
Persistent link: https://www.econbiz.de/10003235410
In this paper Efficient Importance Sampling (EIS) is used to perform a classical and Bayesian analysis of univariate and multivariate Stochastic Volatility (SV) models for financial return series. EIS provides a highly generic and very accurate procedure for the Monte Carlo (MC) evaluation of...
Persistent link: https://www.econbiz.de/10002476893
Persistent link: https://www.econbiz.de/10001782293
Persistent link: https://www.econbiz.de/10001807032
Persistent link: https://www.econbiz.de/10003966966
Persistent link: https://www.econbiz.de/10011587556
Persistent link: https://www.econbiz.de/10011694767
In this paper we consider ML estimation for a broad class of parameter-driven models for discrete dependent variables with spatial correlation. Under this class of models, which includes spatial discrete choice models, spatial Tobit models and spatial count data models, the dependent variable is...
Persistent link: https://www.econbiz.de/10010954827