Showing 1 - 10 of 255
Persistent link: https://www.econbiz.de/10009674398
Persistent link: https://www.econbiz.de/10010000148
Using GARCH models for density prediction of stock index returns, a comparison is provided between frequentist and Bayesian estimation. No significant difference is found between qualities of whole density forecasts, whereas the Bayesian approach exhibits significantly better left-tail forecast...
Persistent link: https://www.econbiz.de/10010594118
This paper proposes an up-to-date review of estimation strategies available for the Bayesian inference of GARCH-type models. The emphasis is put on a novel efficient procedure named AdMitIS. The methodology automatically constructs a mixture of Student-t distributions as an approximation to the...
Persistent link: https://www.econbiz.de/10010325655
This note presents the R package bayesGARCH (Ardia, 2007) which provides functions for the Bayesian estimation of the parsimonious and effective GARCH(1,1) model with Student-t innovations. The estimation procedure is fully automatic and thus avoids the tedious task of tuning a MCMC sampling...
Persistent link: https://www.econbiz.de/10010325986
This paper presents the R package AdMit which provides functions to approximate and sample from a certain target distribution given only a kernel of the target density function. The core algorithm consists in the function AdMit which fits an adaptive mixture of Student-t distributions to the...
Persistent link: https://www.econbiz.de/10010326034
A novel simulation-based methodology is proposed to test the validity of a set of marginal time series models, where the dependence structure between the time series is taken 'directly' from the observed data. The procedure is useful when one wants to summarize the test results for several time...
Persistent link: https://www.econbiz.de/10010377229
Persistent link: https://www.econbiz.de/10003754344
Persistent link: https://www.econbiz.de/10003739124
Persistent link: https://www.econbiz.de/10003974018