Asmussen, Søren; Klüppelberg, Claudia - In: Stochastic Processes and their Applications 64 (1996) 1, pp. 103-125
Consider a random walk or Lévy process {St} and let [tau](u) = inf {t[greater-or-equal, slanted]0 : St u}, P(u)(·) = P(· [tau](u) < [infinity]). Assuming that the upwards jumps are heavy-tailed, say subexponential (e.g. Pareto, Weibull or lognormal), the asymptotic form of the P(u)-distribution of the process {St} up to time [tau](u) is described as u --> [infinity]. Essentially, the results confirm the folklore that level crossing occurs as result of one big jump. Particular sharp conclusions are obtained for...</[infinity]).>