Showing 1 - 10 of 498
This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable...
Persistent link: https://www.econbiz.de/10013135866
Persistent link: https://www.econbiz.de/10008664197
This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable...
Persistent link: https://www.econbiz.de/10013137219
Robust versions of the exponential and Holt-Winters smoothing method for forecasting are presented. They are suitable for forecasting univariate time series in presence of outliers. The robust exponential and Holt-Winters smoothing methods are presented as a recursive updating scheme. Both the...
Persistent link: https://www.econbiz.de/10014220554
Persistent link: https://www.econbiz.de/10003962570
Persistent link: https://www.econbiz.de/10003623718
This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable...
Persistent link: https://www.econbiz.de/10011092158
Multivariate time series may contain outliers of different types. In presence of such outliers, applying standard multivariate time series techniques becomes unreliable. A robust version of multivariate exponential smoothing is proposed. The method is affine equivariant, and involves the...
Persistent link: https://www.econbiz.de/10014200581
Persistent link: https://www.econbiz.de/10008664194
Persistent link: https://www.econbiz.de/10003982213