Showing 51 - 60 of 1,123
We propose methods for inference on the average effect of a treatment on a scalar outcome in the presence of very many controls. Our setting is a partially linear regression model containing the treatment/policy variable and a large number p of controls or series terms, with p that is possibly...
Persistent link: https://www.econbiz.de/10009419338
We consider estimation of policy relevant treatment effects in a data-rich environ ment where there may be many more control variables available than there are observations. In addition to allowing many control variables, the setting we consider allows heterogeneous treatment effects, endogenous...
Persistent link: https://www.econbiz.de/10010200037
In this paper, we consider estimation of general modern moment-condition problems in econometrics in a data-rich environment where there may be many more control variables available than there are observations. The framework we consider allows for a continuum of target parameters and for...
Persistent link: https://www.econbiz.de/10010388633
We develop results for the use of Lasso and post-Lasso methods to form first-stage predictions and estimate optimal instruments in linear instrumental variables (IV) models with many instruments, p. Our results apply even when p is much larger than the sample size, n. We show that the IV...
Persistent link: https://www.econbiz.de/10012955499
In this paper, we provide efficient estimators and honest confidence bands for a variety of treatment effects including local average (LATE) and local quantile treatment effects (LQTE) in data-rich environments. We can handle very many control variables, endogenous receipt of treatment,...
Persistent link: https://www.econbiz.de/10011337681
We develop results for the use of LASSO and Post-LASSO methods to form first-stage predictions and estimate optimal instruments in linear instrumental variables (IV) models with many instruments, p, that apply even when p is much larger than the sample size, n. We rigorously develop asymptotic...
Persistent link: https://www.econbiz.de/10014178689
In this note, we propose the use of sparse methods (e.g. LASSO, Post-LASSO, p LASSO, and Post-p LASSO) to form first-stage predictions and estimate optimal instruments in linear instrumental variables (IV) models with many instruments in the canonical Gaussian case. The methods apply even when...
Persistent link: https://www.econbiz.de/10014178853
Persistent link: https://www.econbiz.de/10011692431
Using many valid instrumental variables has the potential to improve efficiency but makes the usual inference procedures inaccurate. We give corrected standard errors, an extension of Bekker (1994) to nonnormal disturbances, that adjust for many instruments. We find that this adujstment is...
Persistent link: https://www.econbiz.de/10005547933
<p>Instrumental variables are often associated with low estimator precision. This paper explores efficiency gains which might be achievable using moment conditions which are nonlinear in the disturbances and are based on flexible parametric families for error distributions. We show that these...</p>
Persistent link: https://www.econbiz.de/10005727686