Showing 1 - 10 of 312
In Bayesian nonparametric inference, random discrete probability measures are commonly used as priors within hierarchical mixture models for density estimation and for inference on the clustering of the data. Recently it has been shown that they can also be exploited in species sampling...
Persistent link: https://www.econbiz.de/10010335257
In Bayesian nonparametric inference, random discrete probability measures are commonly used as priors within hierarchical mixture models for density estimation and for inference on the clustering of the data. Recently it has been shown that they can also be exploited in species sampling...
Persistent link: https://www.econbiz.de/10010343850
The study of properties of mean functionals of random probability measures is an important area of research in the theory of Bayesian nonparametric statistics. Many results are known by now for random Dirichlet means but little is known, especially in terms of posterior distributions, for...
Persistent link: https://www.econbiz.de/10008518899
We propose a flexible stochastic framework for modeling the market share dynamics over time in a multiple markets setting, where firms interact within and between markets. Firms undergo stochastic idiosyncratic shocks, which contract their shares, and compete to consolidate their position by...
Persistent link: https://www.econbiz.de/10009320156
Species sampling problems have a long history in ecological and biological studies and a number of issues, including the evaluation of species richness, the design of sampling experiments, the estimation of rare species variety, are to be addressed. Such inferential problems have recently...
Persistent link: https://www.econbiz.de/10010587725
The paper proposes a new nonparametric prior for two-dimensional vectors of survival functions (S1, S2). The definition we introduce is based on the notion of L´evy copula and it will be used to model, in a nonparametric Bayesian framework, two-sample survival data. Such an application will...
Persistent link: https://www.econbiz.de/10010335314
The paper proposes a new nonparametric prior for two dimensional vectors of survival functions (S1, S2). The definition we introduce is based on the notion of L´evy copula and it will be used to model, in a nonparametric Bayesian framework, two sample survival data. Such an application will...
Persistent link: https://www.econbiz.de/10010343915
Persistent link: https://www.econbiz.de/10012297524
The paper proposes a new nonparametric prior for two–dimensional vectors of survival functions (S1, S2). The definition we introduce is based on the notion of L´evy copula and it will be used to model, in a nonparametric Bayesian framework, two–sample survival data. Such an application will...
Persistent link: https://www.econbiz.de/10009651797
The paper proposes a new nonparametric prior for two-dimensional vectors of survival functions (S1,S2). The definition we introduce is based on the notion of Lévy copula and it will be used to model, in a nonparametric Bayesian framework, two-sample survival data. Such an application will yield...
Persistent link: https://www.econbiz.de/10008518902