Showing 1 - 10 of 735,413
Persistent link: https://www.econbiz.de/10000941825
In this paper we design a simple trading strategy to exploit the hypothesized distinct informational content of the arithmetic and geometric mean. The rejection of cointegration between the two stock market indicators supports this conjecture. The profits generated by this cheaply replicable...
Persistent link: https://www.econbiz.de/10010291049
In most of the empirical research on capital markets, stock market indexes are used as proxies for the aggregate market development. In previous work we found that a particular market segment might be less efficient than the whole market and hence easier to forecast. In this paper we extend the...
Persistent link: https://www.econbiz.de/10009696691
Persistent link: https://www.econbiz.de/10000941826
In this work we use Recurrent Neural Networks and Multilayer Perceptrons, to predict NYSE, NASDAQ and AMEX stock prices from historical data. We experiment with different architectures and compare data normalization techniques. Then, we leverage those findings to question the efficient-market...
Persistent link: https://www.econbiz.de/10012834485
This paper presents a computational approach for predicting the S&P CNX Nifty 50 Index. A neural network based model has been used in predicting the direction of the movement of the closing value for the next day of trading. The model presented in the paper also confirms that it can be used to...
Persistent link: https://www.econbiz.de/10013087069
This paper presents a study of Artificial Neural Network (ANN) and Bayesian Network (BN) for use in stock index prediction. The data from Nigerian Stock Exchange (NSE) market are applied as a case study. Based on the rescaled range analysis, the neural network was used to capture the...
Persistent link: https://www.econbiz.de/10009746063
In this paper we focus on analyzing the predictive accuracy of three different types of forecasting techniques, Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Network (ANN), and Singular Spectral Analysis (SSA), used for predicting chaotic time series data. These techniques...
Persistent link: https://www.econbiz.de/10012947889
In recent years support vector regression (SVR), a novel neural network (NN) technique, has been successfully used for financial forecasting. This paper deals with the application of SVR in volatility forecasting. Based on a recurrent SVR, a GARCH method is proposed and is compared with a moving...
Persistent link: https://www.econbiz.de/10003636113
In recent years, support vector regression (SVR), a novel neural network (NN) technique, has been successfully used for financial forecasting. This paper deals with the application of SVR in volatility forecasting. Based on a recurrent SVR, a GARCH method is proposed and is compared with a...
Persistent link: https://www.econbiz.de/10012966267